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Abstract— In this paper, we consider the tracking control
problem for a class of hidden mode hybrid systems in which the
mode is not available for control. The time-varying reference
trajectories are given by functions that may exhibit jumps.
We tackle this problem by designing a sliding mode adaptive
controller for the hybrid system to track well-posed time-
varying reference trajectories that may exhibit jumps, using
well-established tools for stabilization of hybrid systems. The
approach is illustrated with examples.

I. INTRODUCTION

The research field of trajectory tracking has been fairly
mature for continuous or discrete systems. On the other
hand, the stability analysis of hybrid systems, i.e. systems
with both continuous and discrete dynamics is also relatively
developed. Unfortunately, general results for tracking hybrid
trajectories are only available for very specific solutions, for
e.g., the work in [1], for a mechanical system subject to
nonsmooth impacts and [2] for the juggling problem. Hence,
there has been a growing interest in developing tracking
controller for hybrid systems. More recently, general results
have been developed in [3] and [4], assuming full knowledge
of the system states and complete control over the system’s
continuous and discrete dynamics. These assumptions are
essential to the control framework for avoiding “peaking
phenomena” (identified in [1], [3]), which occur when the
reference and plant jumps do not coincide.

However, these assumptions are difficult to guarantee, due
to ever present small disturbances and imperfect knowledge
of the system. One such class of hybrid systems is the hidden
mode hybrid system [5], [6], [7], in which the continuous
dynamics is described by a finite collection of functions,
each of which corresponds to a mode of the hybrid system,
and such that the mode is unknown or hidden and mode
transitions are autonomous, i.e., there is no direct control
over the switching mechanism that triggers the discrete
events. There are a large number of applications, in which
it is not realistic to assume knowledge of the mode, or it
is simply impractical or costly to measure the mode. This
is the case, for instance, in navigation across heterogeneous
terrains, manufacturing, electronics, chemical or biological
processes, etc., where the addition of mode sensors add
unnecessary weight or interfere with the controlled process.
Even when such sensors are present, this will be the case
when the mode sensors fail.
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The control of hidden mode hybrid systems has been
addressed for safety control in [7], in which the hidden
mode is estimated while conservatively executing a control
scheme until the mode estimate is sufficiently trustworthy.
However, the wait time for the estimate to converge may
cause unnecessary delays, assuming that the estimate con-
verges in the first place. Thus, the objective of this paper is
to develop a control law that asymptotically track a hybrid
reference trajectory, without knowledge of the hidden modes
and without requiring the convergence of the mode estimate
to its true value.

This paper is organized as follows. In Section II, the
modeling framework and some results of stabilization of
hybrid systems in the literature are provided, while in Section
III, we state the tracking problem of interest. The main
contribution of this paper is the design of a hidden mode
controller for hybrid feedback linearizable square systems,
i.e., with as many inputs as outputs, for which we present
sufficient conditions for the asymptotic tracking of a given
reference in Section IV. Examples are presented in Section
V to demonstrate our approach on a switched and a hybrid
system: car with automatic transmission [8] and actuated
dynamic walker, also known as the toddler [9]. Finally, some
conclusions are provided in Section VI.

II. PRELIMINARY MATERIAL

We first summarize the notation used throughout the paper.
Rn denotes the n-dimensional Euclidean space; is the set
of R≥0 non-negative real numbers; N is the set of natural
numbers including 0. Given a set A, Ā denotes its closure and
Ac its complement. Given a vector x ∈ Rn, ‖x‖ denotes the
Euclidean vector norm and ‖x‖∞ the infinity norm. Given a
set A ⊂ Rn and a point x ∈ Rn, ‖x‖A := infy∈A‖x − y‖.
A function α : R≥0 → R≥0 is said to belong to class-K
(denoted α ∈ K) if it is continuous, zero at zero and strictly
increasing and to belong to class-K∞ if it belongs to class-K
and is unbounded. The function max : R × R → R returns
the maximum value of its arguments.

A. Modeling Framework

We consider a hybrid system H of the form
(ẋ, q̇) = (fq(x, u), 0) (x, u) ∈ Cq

(x, q)+ = (gq(x, u), δq(x, u)) (x, u) ∈ Dq (1)
y = hq(x)

where x ∈ Rn is the continuous state, q ∈ Q :=
{1, 2, . . . , N} the discrete state or mode, u ∈ Uq ⊂ Rm
the input and y ∈ Rp the output. For each q ∈ Q, Uq ⊂ Rm
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is the set of admissible inputs, Cq ⊂ Rn × Uq the flow
set, Dq ⊂ Rn × Uq the jump set, fq : Cq → Rn the
continuous dynamics or flow map, gq : Dq → Rn the
discrete transition/reset map or impulse effects, δq : Dq →
Q the mode transition map and hq the output map. The
data of the hybrid system H is given by (C, f,D, g, δ, h)
with C :=

⋃
q∈Q Cq × {q}, f :=

⋃
q∈Q fq × {q}, D :=⋃

q∈QDq × {q}, g :=
⋃
q∈Q gq × {q}, δ :=

⋃
q∈Q δq × {q}

and h :=
⋃
q∈Q hq × {q}. It also follows from (1) that on

every open interval on Cq\Dq , the mode q remains constant,
while the continuous states flow according to ẋ = fq(x, u).
A special case is when the impulse effects are absent, i.e.,
the reset map is the identity, in which case the system is
referred to as a switched system [10].

Solutions φ to the hybrid system H are defined by hybrid
arcs on hybrid time domains, which are functions defined on
subsets of R≥0 × N given by the union of intervals of the
form [tj , tj+1] × {j}, tj+1 ≥ tj . Since the mode q remains
constant for each j, one can associate each solution of the
hybrid system H with a switching sequence, indexed by an
initial state φ(0, 0) ∈ Rn:
Sφ(0,0) = (t0, q0), (t1, q1), . . . , (tj , qj), . . . , (tN , qN ), . . .

in which the sequence may or may not be infinite. We
may take tN+1 = ∞ in the finite case, with all further
definitions and results holding. The corresponding increas-
ing sequence of switching times is denoted as TS =
t0, t1, . . . , tj , . . . , tN , . . . and the switching modes is denoted
as QS = q0, q1, . . . , qj , . . . , qN , . . ..

Moreover, if we restrict the solutions to the hybrid system
H to a class of solutions known as dwell-time solutions [11],
[10] such that the hybrid time domains are given by the union
of intervals of the form [tj , tj+1] × {j}, tj+1 ≥ tj + τD
with dwell-time τD > 0, we denote the resulting switching
sequence, strictly increasing sequence of switching times and
switching modes as Sφ(0,0)τD , TSτD and QSτD , respectively.

B. Stability

Given an initial state φ(0, 0) ∈ Rn, SH(φ(0, 0)) denotes
the set of maximal solutions φ to H with φ(0, 0).

Definition 1 (Stability [3]): A set A ⊂ Rn is said to be
1) uniformly globally stable if there exists α ∈ K∞

such that each solution φ ∈ SH(φ(0, 0)) satisfies
‖φ(t, j)‖A ≤ α(‖φ(0, 0)‖A) for all (t, j) ∈ domφ;

2) uniformly globally attractive if for each ε > 0 and
λ > 0, there exists T > 0 such that, for any solution,
φ ∈ SH(φ(0, 0) with ‖φ(0, 0)‖A ≤ λ, (t, j) ∈ domφ
and t+ j ≥ T imply ‖φ(t, j)‖A ≤ ε;

3) uniformly asymptotically stable if it is both uniformly
globally stable and uniformly globally attractive.

Definition 2 (Lyapunov-like function candidate): Given a
strictly increasing sequence of times TSτD belonging to
a switching sequence S

φ(0,0)
τD and a closed set of design

equilibrium points defined in the output space A ⊂ Rp, a
function Vq : domVq → R is a Lyapunov-like function for
function fq with respect to set A on Cq over TSτD if

1) Vq is positive definite on Cq with respect to set A,

2) V̇q(x, u) ≤ 0 for all (x, u) ∈ Cq .
Definition 3 (Sequence nonincreasing condition): If there

exist candidate Lyapunov-like functions Vq as defined in
Definition 2 corresponding to fq for all q ∈ Q, we say
they satisfy the sequence nonincreasing condition for a
trajectory x(·) over a strictly increasing sequence of times
TSτD belonging to a given switching sequence Sφ(0,0)τD if

Vq[k + 1] < Vq[k] ∀k ∈ N (2)
where Vq[k] is defined as the infimum of all the values taken
by Vq during the k-th time interval over which (x, u) ∈ Cq .

The following result for asymptotic stability of closed
sets provides the main tool in guaranteeing the asymptotic
tracking property of the hidden mode tracking control.

Theorem 1 (Multiple Lyapunov functions [12]): Given a
switching sequence S and a closed set of design equilibrium
points defined in the output space A ⊂ Rp, if the sequence
nonincreasing condition given in Definition 3 is satisfied,
then the hybrid system H = (C, f,D, g, h) is uniformly
asymptotically stable with respect to A.

Remark 1: Theorem 1 is less restrictive than the asymp-
totic stability conditions given in, for instance, Goebel et al.
[11] and Hespanha [13], as they strictly require a nonincreas-
ing Vq at every jump of the switching sequence Sφ(0,0).

By construction, the closed set of design equilibrium
points defined in the output space A ⊂ Rp must be invariant
during jumps, i.e. such that for all states in the jump set
corresponding to points in the equilibrium set {xd : yd =
hq(xd) ∈ A, (xd, u) ∈ Dq} for all q ∈ lim supSφ(0,0),
there must exist u ∈ Uq such that hq(gq(xd, u)) ∈ A (for
uncontrolled impulse maps, i.e. x+d = gq(xd), hq(gq(xd)) ∈
A). Note that this condition should always be checked,
especially for time-varying hybrid reference trajectories.

The following lemmas present existence conditions for ful-
filling the sequence nonincreasing condition of Theorem 1.

Lemma 1: Given a hybrid system H = (C, f,D, g, h),
a switching mode sequence QS and a sequence of states
associated with the mode switches, there exists a dwell time
τD > 0 such that the sequence nonincreasing condition holds
for a dwell-time switching sequence Sφ(0,0)τD .

Lemma 2: Conversely, given a dwell-time switching se-
quence Sφ(0,0)τD and a sequence of states associated with the
mode switches, if some u ∈ Uq for all q ∈ S

φ(0,0)
τD exist

and can be determined such that on the jump maps gq of
the hybrid system H = (C, f,D, g, h), Vq+(gq(x, u), u) −
Vq(x, u) ≤ α(τD) for all (x, u) ∈ Dq where α ∈ K, then
the sequence nonincreasing condition holds.

III. PROBLEM STATEMENT

In this section, we state the class of hybrid systems for
which we construct a feedback controller that guarantees
asymptotic tracking of a given well-posed hybrid reference
trajectory in the presence of bounded exogeneous distur-
bances. We also state assumptions that are implicitly made
when defining this class of hybrid system and the conditions
for well-posedness of the hybrid reference trajectory. Specif-
ically, we consider square, hidden mode hybrid systems that
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are feedback linearizable.
A square hybrid system refers to a system with as many

inputs as outputs, modeled as a hybrid system H with state
x ∈ Rns , mode q ∈ Q := {1, 2, . . . , N}, input u ∈ Rms ,
and output y ∈ Rms . We shall also restrict our attention
to systems that are feedback linearizable to the following
form: a hybrid system with state ξ ∈ Rnp , composed of
ξ ∈ Rms and their first (m− 1) derivatives, mode q ∈ Q :=
{1, 2, . . . , N}, input u ∈ Rms , and output y = ξ (np =
ms ×m) given by

(ξ(m), q̇) = (fq(ξ, . . . , ξ
(m−1), u), 0) (ξ, u) ∈ Cq

(ξ, q)+ = (gq(ξ, u), δq(ξ, u)) (ξ, u) ∈ Dq.

The reader is referred to the literature (e.g. [14], [15])
on feedback linearization, and specifically input-output lin-
earization for more details. Moreover, we assume that the
input u ∈ Rms has a Lebesgue integrable part u1 and an
impulsive part u2, fq is continuous and gq is Lipschitz con-
tinuous. We also consider a bounded exogenous disturbance
(‖d‖∞ ≤ dmax) that affects the system flow dynamics.

Note that the above system can also be represented by
(henceforth known as the plant Hp):

(a1ξ
(m), q̇) = (

nc−1∑
i=2

ϕi(ξ, . . . , ξ
(m−1))ai + ϕc + d

+ ν(ξ, . . . , ξ(m−1), u1), 0), (ξ, u1) ∈ C (3)

(ξ, q)+ = (gq(ξ, u2), δq(ξ)), ξ ∈ Dq

where ν : Rms → Rms × Rnp is the generalized input,
which by construction (see for e.g. [15] for ensuring this
in the process of input-output linearization), has an inverse
function ν−1 : Rms × Rnp → Rms almost everywhere,
such that the control input u1 ∈ Rms can be determined.
The above construction also implies an implicit assumption
that the system order for each mode is the same and that u1
can be uniquely determined without the knowledge of the
mode q, which will be justified in Section IV-B.

On the other hand, ϕc represents features that are present
in all modes, while for all i ∈ {1, 2, . . . , nc}, ϕi are features
that are common among each mode q, and ai ∈ {ai,0 =
0, ai,1, . . . , ai,q, . . . , ai,N} are premultipliers of the features
that, similar to indicator functions, are constant when the
system is in each time interval over which the mode is q ∈ Q
(when a feature does not appear in a particular mode, ai =
ai,0). By construction, we assume that a1,q > 0, ∀q ∈ Q.

By hidden mode hybrid systems, we refer to hybrid
systems in which the mode q is unknown, either by choice
or otherwise. For the plant (3), this means that the values of
ai are unknown. In addition, hidden mode hybrid systems
are systems with autonomous switching, i.e. with no direct
control over the switching mechanism that triggers the dis-
crete events (δq(ξ, u) = δq(ξ) and ξ ∈ Dq) as in the case
of state-dependent switchings such as impacts and contact in
mechanical systems. The ability to control switching would
imply the knowledge of the mode, which is contrary to the
assumption of a hidden mode system. Note that this is a
harder problem than in Sanfelice et al. [3] because without

knowledge of the mode the hybrid system is in, there is no
possibility of guaranteeing that the jumps of the reference
and plant trajectories occur simultaneously for all switching
times tj ∈ TS by means of controlled switching.

We consider hybrid arcs r : dom r → Rnp defining
reference trajectories to be tracked, which we assume to be
given by a hybrid supervisor, which generates well-posed and
complete dwell-time solutions to the hybrid system. Note
that the well-posedness of the reference trajectories implies
that the trajectories are feasible and that for every jump in
the reference state r ∈ Rnp , composed of r ∈ Rms and its
(m − 1) derivatives, given by r+ − r, there exists u2 such
that r+ = gqr (r, u2) when qr ∈ Dqr , i.e., in the jump set
of the reference trajectory, which we assume is provided by
the trajectory generator alongside the reference trajectory:

{u2 ∈ Uqr : r+ = gqr (r, u2)} (4)
And if there is no impulsive input, i.e. gq(ξ, u2) = gq(ξ),
then the well-posedness condition imply that every jump of
the hybrid reference trajectory r+ − r must satisfy

r+ = gqr (r) qr ∈ Dqr (5)
Finally, a complete hybrid reference trajectory r is one such
that dom r is unbounded.

We consider the following class of tracking hybrid con-
trollers Hc with state η ∈ Rnc (same nc as in Hp):

η̇ =

{
fc(η, ξ, r) (η, ξ, r) ∈ Cc

0 otherwise

η+ = gc(η, ξ, r) (η, ξ, r) ∈ Dc (6)
u = κc(η, ξ, r)

where the flow and jump sets, as well as the flow and reset
maps, Cc, Dc, fc and gc respectively, are defined as in
(1) and κc : Rnc × Rnp × Rnp → Rnc is the control
map. The resulting closed-loop system resulting from the
interconnection of Hp and Hc is denoted Hcl and has state
x : (ξ, η) ∈ Rnp × Rnc .

We now state the the tracking control problem for the class
of hybrid systems defined above.

Problem 1 (Tracking Control Problem): Given an input-
output linearized, square, hidden mode hybrid system Hp
with autonomous switching and a well-posed complete
dwell-time reference trajectory r with switching sequence
S
φ(0,0)
τD , design the controller Hc so that the set of points

A := {ξ : ξ(t, j) = r(t, j)} (7)
is uniformly globally asymptotically stable. �

IV. HIDDEN MODE TRACKING CONTROL

This section presents the design of the hidden mode
tracking controller. This controller is designed using sliding
modes with an adaptive component to regulate the control
states when the system dynamics changes from one mode
to another. We show that, with suitable parameterization of
the controller, this design complies with the sequence nonin-
creasing condition, thus guaranteeing asymptotic tracking of
a given hybrid reference. Then, we consider some variations
of this controller and discuss its implications as well as some
issues related to implementation.
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A. Controller Design

The key tool of the approach is the design of an adap-
tive sliding mode controller [15] for the hybrid system
(3), assuming that ai takes on values between ai,min :=
minq∈{0}∪Q ai,q and ai,max := maxq∈{0}∪Q ai,q for all
i ∈ {1, 2, . . . , nc}. Let us first define a combined error or
sliding mode vector s ∈ Rms

s = e(m−1) + λm−2e
(m−2) + . . .+ λ0e = ∆(p)e (8)

where ∆(p) = pm−1+λm−2p
m−2+λ0 is a stable polynomial

in the Laplace variable p with parameter vector λ :=
{λ0, . . . , λm−2} and e := ξ−r ∈ Rms is the output tracking
error. Note that s can be rewritten as s = ξ(m−1) − ξ(m−1)r

where ξ(m−1)r := r(m−1) − λm−2e(m−2) − . . .− λ0e.
We then proceed to solve Problem 1 by first designing

Hc (6) such that the sliding surface As := {ξ : s = 0}
is uniformly globally asymptotically stable. For asymptotic
stability of sliding surface As, Theorem 1 must hold. Hence,
we construct Lyapunov-like functions which are at their
minima on the sliding surface, for which we prove that
the sequence nonincreasing condition given in Definition 3
holds. In addition, we show that the invariance of the sliding
surface is preserved during jumps. As such, when the trajec-
tory tends towards and remains on the sliding surface, the
tracking error tends to zero. In the following, we demonstrate
the above claims with a few lemmas and a theorem for a
given reference trajectory with dwell time:

τD ≥ τD,snc + τD,s (9)
where τD,snc guarantees the sequence nonincreasing con-
dition and τD,s is the settling time of the tracking error
dynamics when s = 0.

Lemma 3 (Construction of Lyapunov-like functions): For
each mode q ∈ Q, a Lyapunov-like function candidate Vq

Vq =
1

2
a1s

T s+
1

2
ãTq Γ−1ãq (10)

can be defined with ãq = âq − aq , where aq :=
[a1,q, a2,q, . . . , anc,q]

T and the premultiplier estimates âq =
η are the controller states, as well as Γ = diag(Γ1, . . . ,Γnc)
where Γi > 0 for all i ∈ {1, . . . , nc}. The conditions for
a Lyapunov-like function candidate (see Definition 2) are
satisfied with the following control and adaptation laws:

η̇i =

{
−Γiyi s (ηi, ξ, r) ∈ Cc,i

0 (ηi, ξ, r) ∈ Ccc,i
∀ i ∈ {1, . . . , nc}

u = ν−1(Yη − ϕc − (κ+ dmax)sgn(s)) (11)

where yi ∈ Y := [ξ
(m)
r , −ϕ1(·) , . . . , −ϕnc(·)], the con-

troller flow set complement is given by Ccc,i := {(ηi, ξ, r) :
(ηi ≥ ai,max∧−Γiyi s ≥ 0)∪ (ηi ≤ ai,min∧−Γiyi s ≤ 0)},
and κ > 0 is a positive constant.

Proof: For each mode q, we define a Lyapunov-like
function, Vq as in (10). The derivative of the Lyapunov-like
function is given by
V̇q = s(a1ξ

(m) − a1ξ(m)
r ) + ˙̂aTq Γ−1ãq

= s(

nc∑
i=1

ϕi(·)ai + ϕc − a1ξ(m)
r + ν(·, u) + d) + ˙̂aTq Γ−1ãq

= s(ν(·, u) + d−Yaq − ξ(m)
r ) + ˙̂aTq Γ−1ãq,

With the control and adaptation law in (11) for (ηi, ξ, r) ∈ Cc,i,
we obtain V̇q ≤ −κ|s| ≤ 0. Otherwise, for (ηi, ξ, r) ∈ Ccc,i, the
adaptation is stopped (ηi = 0). If the adaptation were not stopped,
the adaptation would be such that sT yTi ãi,q+η̇

T
i Γ−1

i ãi,q = 0. Since
for (ηi, ξ, r) ∈ Ccc,i, sgn(η̇i) = sgn(ãi,q), then sT yTi ãi,q ≤ 0.
Therefore, stopping adaptation retains this extra negative term in
V̇q , i.e. V̇q ≤ −κ|s| + sT yTi ãi,q ≤ −κ|s| ≤ 0. Moreover, Vq is
positive definite. Thus, the conditions in Definition 2 hold.

Lemma 4 (Sequence nonincreasing condition): The
sequence nonincreasing condition holds for the multiple
Lyapunov functions Vq for all q ∈ Sφ(0,0)τD for the switching
sequence of a given reference trajectory with a dwell time
given by (9) with

τD,snc = sup
(tj ,j)∈domφ

√
2aqj ,1

κ
((Vqj−1 −∆Vη,j)

1
2 (12)

− (∆Vj + Vqj−1 −∆Vη,j)
1
2 )

where ∆Vj := Vqj (gqj−1(x, u), u)− Vqj−1(x, u), ∆Vη,j :=
1
2 ãTq,maxΓ

−1ãq,max and ãq,max := [max(aqj ,0,max −
aqj ,0, aqj ,0 − aqj ,0,min), . . . ,max(aqj ,nc−1,max −
aqj ,nc−1, aqj ,nc−1 − aqj ,nc−1,min)].

Proof: By Lemma 1, there exists of a dwell-time refer-
ence trajectory for which the sequence nonincreasing condi-
tion holds. In addition, since V̇q ≤ −κ|s| ≤ −κ[ 2

aqj,1
(Vq −

∆Vη,j)]
1
2 for all q ∈ Q, we have quadratic decrease in Vq

between switches. Therefore, if τD,snc is chosen as in (12)
with suitable choices of Γ and κ, the decrease of ∆Vj for
all j ∈ N such that (t, j) ∈ domφ is guaranteed.

Lemma 5 (Invariance of sliding surface): The sliding
surface s = 0 where s is given by (8) is invariant if it
satisfies Lemmas 3 and 4, the reference trajectory has a
dwell time given by (9) and (12), and the impulsive control
input is chosen as in (4) or if there is no impulsive control
input, (5) holds.

Proof: For invariance, the sliding surface must be
attractive and any trajectory starting on the sliding surface
must remain on the surface. By Lemma 3, the choice of
control and adaptation laws in (11) ensures the existence
of multiple Lyapunov functions for the system. In addition,
one can verify that V̈q is bounded almost everywhere, since
s and ãq are bounded by the initial value of Vq , and remains
bounded over each time interval by the sequence nonincreas-
ing condition, while ṡ is bounded by the closed loop system
equation. Therefore, by Barbalat’s Lemma, s → 0 for each
flow time interval, and by the multiple Lyapunov function
theorem in Branicky [12], s → 0 for the entire system. In
fact, it can be shown that s = 0 is achieved in finite time
[15]. This guarantees the attractiveness and the invariance of
the sliding surface while the state ξ remains in its flow set.
The second term of (9) ensures that that the error ‖ξ‖A goes
to zero within the same time interval on the flow set as when
s reaches zero, since by suitable choice of λ, (8) is Hurwitz
with settling time τD,s. When s = 0, with the impulsive
control input u2 given in (4) or if (5) holds when there is
no impulsive control input, the jumps in the hybrid system
coincides with that of the reference trajectory, resulting in
s(tj , j) = s(tj , j − 1) for all j > J where J denotes the
index of the first jump for which s = 0, hence the sliding
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surface is invariant during jumps.
Theorem 2: The control and adaptation laws in (11) solves

Problem 1 for a given reference trajectory and impulse
dynamics that satisfy Lemma 4 and Lemma 5, respectively.

Proof: By Lemmas 3, 4 and 5, there exists Lyapunov-
like functions for the system in Problem 1 that satisfy the
conditions of Theorem 1. Thus, the sliding surface s is
attractive and invariant. Furthermore, the invariance of the
sliding surface s implies that ‖ξ‖A → 0, since the error
dynamics on the sliding surface s = 0 with s given (8) is
stable (Hurwitz).

Thus, we have shown that the hidden mode tracking
controller defined in (11) and (4) leads to asymptotic tracking
of a given hybrid reference satisfying Lemma 4, even in
the presence of bounded exogeneous disturbances. Note that
nowhere in the control law is the explicit knowledge of the
mode q required–hence the name.

To some extent, the adaptive component of the tracking
controller is a mode observer, as it implicitly infers the
mode based on the changing dynamics of the controller
system. Nevertheless, this controller avoids the pitfall of
many adaptive controllers because adaptation is only on a
need-to-know basis. Oftentimes, the values of ηi do not
converge to the true values ai for some i ∈ {1, 2, . . . , nc},
making the estimate of mode q inaccurate, or worse still,
they converge to values for which the mode q is undefined.
To understand the conditions for which the estimates do
converge to their true values, observe that the closed loop
dynamics with the control law given in (11) is the following

a1ṡ+ κs+ dmaxsgn(s) = Y ã + d.

Thus, as s→ 0, Y ã+d→ 0, implying that for the estimates
to converge to their true values, the following must hold:

1) The disturbance d must tend to zero as s→ 0.
2) There exist t0 ≥ 0, T > 0, α1 > 0 such that,
∀t ≥ t0,

∫ t+T
t

Y TY dt ≥ α1I. Note that this is the
persistence of excitation condition found in literature
on adaptive control (e.g. [15], [16]).

3) For all t ∈ TS corresponding to each q ∈
lim supSφ(0,0), ã+−ã must be zero. For a possible ap-
proach to satisfy this, see the discussion on controller
discrete transition maps in the following section.

Next, we discuss some variations of the control law that
similarly lead to asymptotic tracking and some issues related
to the implementation of the controller.

B. Variations and Implementation Issues

A variation of the control law in (11), with
u = ν−1(Yη − ϕc − κs− dmaxsgn(s)) (13)

can easily be shown to also lead to asymptotic tracking, since
V̇q ≤ −κsT s ∀q ∈ Q which leads to an exponential decrease
in Vq between switches (as opposed to quadratic decrease
with the control law in (11)). The advantage of this variation
of control law is the greater decrease in Vq when s is large,
but the sliding mode is not reached in finite time, which may
reinduce the peaking phenomenon. One can thus consider

initially using the version in (13) and switching to the version
in (11) when s is sufficiently small.

In addition, one can implement a hybrid controller by
adding a discrete transition map for the controller states
η+i = ηi,r, (η, ξ, r) ∈ {(η, ξ, r) : s = 0, r+ − r 6= 0} (14)

where ηi,r is the premultiplier values ai corresponding to
the mode of the given reference trajectory r+ for all i ∈
{1, . . . , nc}. Since the control states is only updated with
this jump map when s = 0, this has the effect of setting
the premultiplier states to its correct values. This addition
can increase the rate at which Vq decreases during flows
since ∆Vη,j as defined in Lemma 4 equals zero. Thus, this
may be useful especially when the given reference trajectory
has a smaller dwell-time than is required for the sequence
nonincreasing condition to hold for a small subset of the
system modes. Note that the inclusion of this controller reset
map also ensures that the third condition for mode estimate
convergence is satisfied.

The presence of sgn(s) in the control laws (discontinuous
across the sliding surface) leads to chattering which is
undesirable in practice, because of high control activity and
excitation of high frequency dynamics typically neglected
in modeling. This can be achieved by smoothing out the
discontinuity in a thin boundary layer around the sliding
surface [15], defined by ‖s‖ ≤ Φb, where Φb is the boundary
layer ”thickness”. Within the boundary layer, the term sgn(s)
is replaced by s/Φb, whereas when ‖s‖ > Φb, the term
sgn(s) is retained. We represent this smoothed term with a
saturation function sat : Rn → Rn. However, note that with
the implementation of the boundary layer, the invariance of
the boundary layer may not be guaranteed during jumps,
thus reinducing the peaking phenomenon, implying that the
tracking can only be achieved to within a certain precision
εp in the sense of [1] (rather than “perfect” tracking).
Nevertheless, the hidden mode tracking controller with a
sliding surface boundary layer functions sufficiently well
for most applications that do not require perfect tracking.
Moreover, if one is satisfied with “imperfect” tracking, the
tracking controller presented in this paper can track reference
trajectories with dwell times that are much smaller than the
sufficiency bound given in (9). However, chattering reduction
and perfect tracking may be simultaneously achievable with
higher order sliding modes, or other control approaches. This
is part of current research.

Finally, to implement this controller, we have to ensure
that u1 can be determined without the knowledge of q, as
assumed in the problem statement in Section III. This is not
unreasonable to require, as this can be resolved in the system
design process, for e.g. by placing the actuator such that the
input affects the system the same way in all modes or by
having independent actuators for each mode such that when
mode q is active, actuators corresponding to modes that are
not q can be active without affecting the system dynamics.
Moreover, the typical operating range of the generalized
input ν(., u1) may be different in each mode, such that the
mode can be inferred and u1 can be uniquely determined.
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V. EXAMPLES

To demonstrate the effectiveness of the control scheme to
asymptotically track a given trajectory with no measurement
of the current mode, we present two examples: car with
automatic transmission, and actuated dynamic walker, The
simulations were implemented in MATLAB on a 2.2 GHz
Intel Core i7 CPU.

1) Car with Automatic Transmission: We first implement
the hidden mode tracking controller on an example of a
switched system modeled as a finite automaton: a simplified
model of a car with automatic transmission (from [8]). This
switched system is given by

v̇ = − k
m
v2sgn(v)− g sinα+

Gq
m
τ,

q+ =

{
q + 1 if q 6= 4, v = 1

Gq
ωhigh

q − 1 if q 6= 1, v = 1
Gq
ωlow

,

where m = 1000 kg is the mass of the car, Gq =
{3, 2, 1, 0.8} are the transmission gears ratios corresponding
to modes/gears q = {1, 2, 3, 4}, k = 100 Ns2m−2, is
a constant, ωhigh = 25 rads−1 and ωlow = 15 rads−1

are prescribed angular velocities of the engine, and α is
the road inclination that is chosen to be periodic, α =
0.2 sin(π/2t) rad.

To implement the controller outlined in Section IV, we
put the plant dynamics in the form given in (3):

a1v̇ = −a2
k

m
v2sgn(v) +

τ

m
+ d

where the hidden premultipliers/parameters are a1 = a2 =
1/3 when in gear q = 1, a1 = a2 = 1/2 when q = 2,
a1 = a2 = 1 when q = 3, and a1 = a2 = 1/0.8 when q =
4, whereas the road inclination is treated as an exogeneous
disturbance, |d| ≤ dmax = g.

Then, the control law given by (11) can be implemented to
track a reference trajectory given by another sinusoid, vref =
10 cos(πt) + 15 ms−1:

(η̇1, η̇2) = (−Γ1v̇refs,−Γ2
k

m
v2sgn(v)s),

τ = m(v̇refη1 +
k

m
v2sgn(v)η2 − (κ+ dmax)sgn(s)),

where Γ1 = Γ2 = 1, κ = 3, v̇ref = −10π sin(πt) and the
sliding mode is given by s = v − vref .

Figure 1(a) shows the time history of the sliding mode
variable, which happens to be the tracking error in this case.
s converges to zero within the first half period in v, implying
that we have asymptotic tracking of the reference trajectory.
However, since the discontinuous version of the control
law is used (without a sliding surface boundary layer), we
observe chattering in the control input. Besides, as mentioned
in Section IV-A, the values of η1, η2 do not converge to
the actual values (bottom plot of Figure 1(b)). In fact, there
is a conflict between the two estimates and thus, the mode
estimate is undefined.

2) Actuated Dynamic Walker (Toddler): Figure 2(a)
illustrates the actuated dynamic walker, also known as the
toddler model [9]. The goal is to actuate the dynamic walker,
such that it toddles in a periodic fashion in the frontal plane,

Time, t [ s]

S
li

d
in

g
m

o
d
e
,

s
[−

]

0 1 2 3 4 5 6 7 8−25

−20

−15

−10

−5

0

5

(a) Sliding mode variable.

Time, t [ s]

V
e
lo

c
it

y
,

v
[m

/
s
]

0 1 2 3 4 5 6 7 8
0

20

40
v
vr ef

Time, t [ s]

T
o
rq

u
e
,

T
[k

N
m

]

0 1 2 3 4 5 6 7 8
−200

0

200

Time, t [ s]

M
o
d
e
,

q
[−

]

0 1 2 3 4 5 6 7 8
0

2

4

Time, t [ s]

G
e
a
r

ra
ti

o
,

G
q

[−
]

0 1 2 3 4 5 6 7 8
0

2

4
Gq

1/a1

1/a2

(b) Plant and controller states; control input.

Fig. 1. Time history of closed-loop system states: v, η1, η2 and the control
input τ and sliding mode variable for car with automatic transmission.

for which the dynamics is given as:
H(θ)θ̈ + C(θ, θ̇)θ̇ +G(θ) = τ,

where τ is the control input/torque generated at the hip or
from ankle actuation.

When the ground contact point is in the curved portion of
either foot, i.e. |θ| > φ, the dynamics are:

H(θ) = I +ma2 +mR2
f − 2mRfa cos θ,

C(θ, θ̇) = mRfaθ̇ sin θ, G(θ) = mga sin θ,

whereas, when the ground contact is along the inside edge
of the foot, i.e. |θ| ≤ φ,

H(θ) = I +ma2 +mR2
f − 2mRfa cosφ,

C(θ, θ̇) = 0, G(θ) = mg(a sin θ −Rf sinα),

where α = θ − φ if θ > 0, otherwise α = θ + φ. The mass
is given by m, the moment of inertia by I and the lengths
and angles are as depicted in Figure 2(a).

Furthermore, when θ = 0, the swing leg collides with the
ground, and assuming an inelastic collision, the angular rate
after collision is given by

θ̇+ = θ̇− cos

[
2 arctan

(
Rf sinφ

Rf cosφ− a

)]
.

Thus, putting the dynamics in the form given in (3), the
hybrid system describing the frontal plane toddler model is
a1θ̈ = a2mRfa sin θθ̇2 + a3mgRf sin θ cosφ+

a4mgRf cos θ sinφ−mga sin θ + τ + d, (15)

(θ, θ̇, τ) ∈ C := {(θ, θ̇, τ) : θ 6= 0}

θ̇ = θ̇ cos

[
2 arctan

(
Rf sinφ

Rf cosφ− a

)]
,

(θ, θ̇, τ) ∈ Dq := {(θ, θ̇, τ) : θ = 0}
where when q = 1 (|θ| > φ), a1 = I+ma2+mR2

f , a2 = −1,
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(a) Frontal plane toddler [9].
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(b) Sliding mode variable.
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(c) Reference and actual states, modes, and torque input.
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(d) Comparison of estimated premultipliers with actual values.
Fig. 2. Frontal plane toddler model [9] and time history of closed-loop
system states: θ, θ̇, η1, η2, η3, η4, control input and sliding mode variable.

a3 = 0, and a4 = 0, whereas when q = 2 (0 < θ ≤ φ),
a1 = I + ma2 + mR2

f − 2mRfa cosφ, a2 = 0, a3 = 1,
and a4 = −1, and, finally, when q = 3 (−φ ≤ θ ≤ 0),
a1 = I +ma2 +mR2

f − 2mRfa cosφ, a2 = 0, a3 = 1, and
a4 = 1. Note that 2mRfa cos θθ̈ term in q = 1 is treated
as a disturbance, |d| ≤ 2mRfaθ̈max, where θ̈max is the
maximum expected |θ̈| for the entire trajectory.

For this example, we implemented the variant of the
hidden mode tracking controller described in Section IV-B,
i.e. with the control laws given by (11), (13) and (14) for the
frontal plane toddler model with the following parameters:
a = 0.1 m,Rf = 0.5 m,m = 3 kg, I = 0.1 kgm2, φ =
0.45 rad, g = 9.81 ms−2, λ = 2, κ = 35,Φb =
0.05, dmax = 0.9 Nm and Γ = diag(30, 30, 30, 30).

Figure 2(c) shows the time history of the reference and
actual hybrid system states, torque input and the controller
states. The controller quickly tracks the given reference
trajectory (denoted by dashed red lines). The transients
disappears within two periods in θ, which we can see from
the settling of system variables to periodic patterns.

We also observe that the chattering in the control input
is almost eliminated with the implementation of the sliding
surface boundary layer. However, for this smoothing, we

pay a small price of having to accommodate small jumps
in s during the transition between one foot to the other
(see Figure 2(b)). Once again, the hidden parameters do not
converge to their true values (see Figure 2(d)), and except for
a few time instances, the mode is undefined. Therefore, we
have shown that the hidden mode tracking controller works
even without a reliable estimate of its hybrid mode.

VI. CONCLUSION

This paper presented a novel approach to track a given
reference trajectory of a hybrid system in which the system
mode is hidden, in the presence of exogeneous disturbances.
We presented the proof for asymptotic tracking of a dwell-
time reference trajectory for a particular class of hybrid
systems, with a hidden mode tracking controller that does not
require the convergence of its mode estimate. Applications
of this result can range from mechanical to electrical to bio-
logical systems, provided that the assumptions in Section IV
hold. By means of numerical examples, we illustrated the
effectiveness of the hidden mode tracking controller.
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