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Abstract— In this paper, we present an optimal filter for
linear discrete-time stochastic systems with direct feedthrough
that simultaneously estimates the states and unknown inputs
in an unbiased minimum-variance sense. We argue that the
information about the unknown input can be obtained from
the current time step as well as the previous one, making it
possible to estimate the unknown input in different ways. We
then propose one variation of the filter that uses the updated
state estimate to compute the best linear unbiased estimate
(BLUE) of the unknown input. The comparison of the new
filter and the filters in existing literature is discussed in detail
and tested in simulation examples.

I. INTRODUCTION

Kalman filtering provides the tool needed for obtaining
a reliable estimate from measured data corrupted by noise
when the system is linear and when an accurate model of
the process dynamics and observations is available. However,
in many instances, systematic measurement errors or model
uncertainties are inevitable, for example, in the setting of
semi-autonomous multi-vehicle systems, the input of the
other vehicle is inaccessible/unmeasurable [1]. Nonetheless,
we want to be able to estimate the states of the other vehicle
based on noisy measurements for purposes of collision
avoidance, route planning, etc. Moreover, estimates of the
unknown inputs may be used to predict the intention of the
other vehicle or to improve control performance.

This same problem can be found across a wide range
of disciplines, from the real-time estimation of mean areal
precipitation during a storm [2] to fault detection and diag-
nosis [3] to input estimation in physiological systems [4].
Thus, this filtering problem in the presence of errors and
uncertainties, which oftentimes are modeled as unknown
disturbance inputs, has steadily made it to the forefront in
the recent decades. Research in this field began with state
estimation of systems with unknown biases [5] and unknown
disturbance of known dynamics [6], but has since moved
towards state estimation with arbitrary unknown inputs.

Literature review. An optimal filter that estimates a
minimum-variance unbiased (MVU) estimate is first devel-
oped for linear systems without direct feedthrough in [2].
This design was extended to a more general parameterized
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solution by [7], and eventually to state estimation of systems
with direct feedthrough in [8]–[10]. While most of the
research focus had only been on state estimation in the
presence of unknown inputs, the problem of estimating the
unknown input itself is gaining more attention, as researchers
realize that the information about the unknown input is often
as important as state information. Thus, in addition to MVU
state estimation, an approach is proposed in [11] to recon-
struct the unknown inputs, in a process that is decoupled
from state estimation. This development was followed by
the design of simultaneous input and state estimation filters
for systems without direct feedthrough in [12], [13], with
the objective of concurrently obtaining minimum-variance
unbiased estimates for both the states and the unknown
disturbance inputs to the system. Soon after, extensions to
systems with direct feedthrough were proposed by [14]–[16].

Contributions. This paper proposes a new minimum-
variance unbiased (MVU) filter for both input and states for
systems with direct feedthrough, a problem first considered
in [12]–[14]. This is in contrast to the majority of filters,
which seek an MVU estimate only of the systems states,
e.g. [2], [11]. Interestingly, for the case without direct
feedthrough, the MVU state filters of [2], [11], [12], was
shown by [13] to implicitly estimate the input in an unbiased
minimum variance sense. However, whether this is also true
in the case with direct feedthrough is unclear.

More interestingly for systems with direct feedthrough,
the unknown inputs affect the system in two ways, both
in the state dynamics and in the measurement. Thus, this
presents two approaches of estimating the unknown inputs,
as shown in [11] – one with and another without a one step
delay. The fact that the unknown inputs of systems with and
without direct feedthrough are estimated differently with, or
without one step delay was also briefly noted in [14], while
in [9], there are two proposed filters – an estimator filter that
optimally estimates the current state based on current mea-
surements, and a predictor filter which optimally predicts the
current state based on previous measurements. Therefore, the
unknown input can potentially be estimated in three different
ways: solely based on previous measurement and previous
state estimate, based on the current measurement and the
propagated/predicted current state, or based on the current
measurement with the updated/estimated current state.

The MVU input and state estimator in Fang et al. (2011)
[16] falls into the first category, as the state and input
are estimated with one step delay, in a purely predictive
manner. The version of the filter with one step delay in
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Palanthandalam and Bernstein (2007) [11] is also in this
category, although only the states are estimated in an MVU
manner. On the other hand, the MVU input and state esti-
mator in Gillijns and De Moor (2007b) [14] belongs to the
second category, since the unknown input is estimated from
the current measurement and the propagated state estimate,
in sort of a half-step delay fashion. In the third category,
we have the version of the filter without one step delay in
Palanthandalam and Bernstein (2007) [11]. However, as in
the case with one step delay, the inputs are reconstructed
such that it is unbiased but it is not BLUE. Thus, to bridge
this gap, we propose an MVU input and state estimator
for linear discrete-time systems with direct feedthrough in
Section IV, which estimates the unknown input based on
the current measurement and its updated state estimate, as
opposed to the predicted state estimate in [14]. Since the
updated state estimate is expected to have a lower variance
than the propagated state estimate (otherwise the update
would be counterproductive), we expect the new filter to be
no worse than the one based on the propagated state estimate.

For a more detailed discussion of each of these filters,
the readers are referred to Section V, in which we compare
and contrast the proposed input and state estimator with the
filters in existing literature, as well as discuss the limitations
of each of them. We shall then highlight the differences in
performance of the different filters using several illustrative
examples in Section VI.

II. PRELIMINARY MATERIAL
We first summarize the notation used throughout the paper.

Rn denotes the n-dimensional Euclidean space, and N posi-
tive integers. For a vector of random variables, v ∈ Rn, the
expectation is denoted by E[v]. Given a matrix M ∈ Rp×q ,
its transpose, inverse and Moore-Penrose pseudoinverse are
given by M>, M−1 and M†. For a symmetric matrix S,
S � 0 and S � 0 indicates that S is positive definite and
positive semidefinite, respectively. We also define some basic
notions from estimation theory.
Definition 1 (Minimum-variance unbiased estimate
(MVUE)). An estimate of an unknown signal vector θ,
denoted θ̂ is unbiased if E[θ̂] = θ, i.e. the estimate error
θ̃ = θ− θ̂ has a zero bias, bias(θ̂) = E[θ̃] = 0. Furthermore,
the estimate is an minimum-variance unbiased estimate,
if the variance of the unbiased estimate θ̂, denoted as
var(θ̂) = E[(θ̂ − E[θ̂])>(θ̂ − E[θ̂])] is not higher than any
other unbiased estimates for all possible values of the signal
vector θ.

Definition 2 (Best linear unbiased estimate (BLUE)). An
estimate θ̂ of the linear form θ̂ = Ax, where x is the
measured data, is the best linear unbiased estimate (BLUE)
of an unknown signal vector θ if the estimate has no higher
variance than any other linear unbiased estimates for all
possible values of θ.

Remark 1. In the special case with a linear data model
given by x = Hθ + w where x is the measured data, H is
a known matrix with full rank, θ is to be estimated and w is
a Gaussian white noise, a BLUE will be a MVUE [17].

III. PROBLEM STATEMENT

Consider the time-varying discrete-time linear system with
direct feedthrough

xk+1 = Akxk +Bkuk +Gkdk + wk (1)
yk = Ckxk +Dkuk +Hkdk + vk (2)

where xk ∈ Rn is the state vector at time k, uk ∈ Rm is
a known input vector, dk ∈ Rp is an unknown input vector,
and yk ∈ Rl is the measurement vector. The process noise
wk ∈ Rn and the measurement noise vk ∈ Rl are assumed to
be mutually uncorrelated, zero-mean, white random signals
with known covariance matrices, Qk = E[wkw

>
k ] � 0 and

Rk = E[vkv
>
k ] � 0, respectively. The matrices Ak, Bk, Gk,

Ck, Dk and Hk are known and it is assumed that Hk has full
column rank, i.e. rank(Hk) = p. x0 is also assumed to be
independent of vk and wk for all k and the unbiased estimate
x̂0 of the initial state x0 is available with covariance matrices
Px0 , Pxd0 and Pd0 . In addition, we assume that the system
has perfect/strong observability, i.e., the initial condition x0
and the unknown input sequence {di}r−1i=0 can be uniquely
determined from the measured output sequence {yi}ri=0 of
a sufficient number of observations, i.e., r ≥ r0 for some
r0 ∈ N (see, e.g., [18]–[20]).

The objective of this paper is to design an optimal re-
cursive filter algorithm which simultaneously estimates the
system state xk and the unknown input dk based on an initial
unbiased estimate x̂0 and the sequence of measurements
up to time k, {y0, y1, . . . , yk}. No prior knowledge of the
dynamics of dk is assumed and the unknown input can be a
signal of any type.

IV. MINIMUM-VARIANCE UNBIASED FILTER FOR INPUT
AND STATE ESTIMATION

We consider a recursive three-step filter of the form

x̂k|k−1 = Ak−1x̂k−1|k−1 +Bk−1uk−1 +Gk−1d̂k−1 (3)
x̂k|k = x̂k|k−1 + Lk(yk − Ckx̂k|k−1 −Dkuk) (4)

d̂k = Mk(yk − Ckx̂k|k −Dkuk) (5)

where the matrices Mk ∈ Rp×l and Lk ∈ Rn×l are yet to be
determined. The three steps are time update, measurement
update and input estimation. Note that this is similar to the
three steps in [14] but in a different order. This seemingly
small change actually leads to a rather significantly different
estimator, as it turns the input estimate into one which is
more of an estimated value, rather than a predicted value. In
the next subsections, we will discuss each of the three steps
of the filter algorithm given in Algorithm 1.

A. Time Update
Given measurements up to time k − 1, let x̂k−1|k−1 and

d̂k−1 denote the optimal unbiased estimates of xk−1 and
dk−1. Then, the current state is predicted using a copy of
the plant given by (3). With this, the error in the propagated
state estimate and its covariance matrix are given by

x̃k|k−1 :=xk − x̂k|k−1
=Ak−1x̃k−1|k−1 +Gk−1d̃k−1 + wk−1 (6)
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Algorithm 1 Input and State Estimation Algorithm

1: Initialize: x̂0|0 = E[x0]; d̂0 = H†0(y0 − C0x̂0|0 − D0u0);
P x
0|0 = Px

0 ; P xd
0 = Pxd

0 ; P d
0 = Pd

0 ;
2: for k = 1 to N do
. Time update

3: x̂k|k−1 = Ak−1x̂k−1|k−1 +Bk−1uk−1 +Gk−1d̂k−1;
4: P x

k|k−1 = Ak−1P
x
k−1|k−1A

>
k−1 +Gk−1P

xd>
k−1A

>
k−1

+Ak−1P
xd
k−1G

>
k−1 +Gk−1P

d
k−1G

>
k−1 +Qk−1;

5: R̃k = CkP
x
k|k−1C

>
k +Rk;

. Measurement update
6: Kk = P x

k|k−1C
>
k R̃
−1
k ;

7: Lk = Kk(I −Hk(H
>
k R̃
−1
k Hk)

−1H>k R̃
−1
k );

8: x̂k|k = x̂k|k−1 + Lk(yk − Ckx̂k|k−1 −Dkuk);
9: P x

k|k = (I − LkCk)P
x
k|k−1(I − LkCk)

> + LkRkL
>
k ;

. Estimation of unknown input
10: R̃?

k = (I − CkLk)R̃k(I − CkLk)
>;

11: P d
k = (H>k R̃

?−1
k Hk)

−1;
12: Mk = P d

kH
>
k R̃

?−1
k ;

13: d̂k =Mk(yk − Ckx̂k|k −Dkuk);
14: P xd

k = −P x
k|kC

>
k M

>
k + LkRkM

>
k

15: end for

P xk|k−1 :=E[x̃k|k−1x̃
>
k|k−1]

=Ak−1P
x
k−1|k−1A

>
k−1 +Gk−1P

dx
k−1A

>
k−1 (7)

+Ak−1P
xd
k−1G

>
k−1 +Gk−1P

d
k−1G

>
k−1 +Qk−1

with x̃k|k := xk− x̂k|k, d̃k := dk− d̂k, P xk|k := E[x̃k|kx̃>k|k],
P dk := E[d̃kd̃

>
k ] and P dxk = (P xdk )> := E[d̃kx̃

>
k|k], which

will be derived in the next subsections.

B. Measurement Update

In the measurement update step, the measurement yk is
used to update the propagated estimate x̂k|k−1 with (4) to
obtain an updated state estimate. Then, from (2) and (4), the
updated state estimate error is

x̃k|k = (I − LkCk)x̃k|k−1 − LkHkdk − Lkvk. (8)

In order that the state estimate is unbiased (E[x̃k|k] = 0) for
all possible dk, we observe that the constraint LkHk = 0
must be imposed for all k. Note also that the latter term in
the measurement update step given in (4) does not contain an
Hkd̂k term as would be expected in the residual/innovation
computation. Besides the practical reason that this unknown
input estimate is not yet available, this term can also be seen
as being nullified by the constraint LkHk = 0. Then, the
covariance matrix of the updated state estimate error is

P xk|k = (I − LkCk)P xk|k−1(I − LkCk)> + LkRkL
>
k . (9)

To obtain an unbiased minimum variance estimator, we then
proceed to derive the optimal gain matrix Lk, by minimizing
the trace of (9), because the trace represents the sum of
the estimation error variances of the states, subject to the
constraint LkHk = 0 .

Theorem 1. The minimum-variance unbiased state estimator
is obtained with the gain matrix Lk given by

Lk = P xk|k−1C
>
k R̃
−1
k (I −Hk(H>k R̃

−1
k Hk)−1H>k R̃

−1
k ) (10)

where R̃k := CkP
x
k|k−1C

>
k +Rk, if and only if (H>k R̃

−1
k Hk)

is nonsingular, i.e. rank(Hk) = p.

Proof. First, we show by induction that the estimates x̂k|k
and x̂k|k−1 are unbiased, provided that the input estimate is
unbiased, which we will ensure in Section IV-C. For the base
case, we shall assume that E[x̃0|0] = 0 and E[d̃0] = 0. Thus,
by (6) and the fact that the process noise has zero mean,
we get E[x̃1|0] = 0. For the inductive step, we assume that
E[x̃k|k−1] = 0. By (8), E[x̃k|k] = 0 because we impose
the constraint LkHk = 0 and the measurement noise has
zero mean, i.e. E[vk] = 0. Then, by (6), E[x̃k+1|k] = 0

since E[d̃k] (see Section IV-C) and E[wk] = 0. Therefore,
by induction, E[x̃k|k] = 0 and E[x̃k|k−1] = 0 for all k, which
means that x̂k|k and x̂k|k−1 are unbiased.

Next, we employ the optimization approach with Lagrange
multipliers (Λk ∈ Rp×n) in [2], [11], [13], to find the
particular gain Lk that minimizes the trace of the covari-
ance matrix P xk|k, while being subjected to the constraint
LkHk = 0 which is a necessary condition for obtaining
an unbiased estimate. This constrained optimization problem
can be solved using differential calculus with the Lagrangian

L(Lk,Λk) := trace(P xk|k)− 2 trace(LkHkΛ>k ).

Differentiating the Lagrangian with respect to Lk and Λk,
and setting it to zero, we obtain

∂L
∂Lk

= 2(R̃kL
>
k − CkP xk|k−1 −HkΛ>k ) = 0

∂L
∂Λk

= −2LkHk = 0

Solving the above linear system of equations, we obtain
the optimal gain matrix (10), provided (H>k R̃

−1
k Hk) is

nonsingular. �

C. Input Estimation
Finally, the unknown input can also be estimated, such

that it is the best linear unbiased estimate (BLUE). This
means that the expected input estimate must be unbiased,
i.e. E[d̂k] = dk, which will be shown in Theorem 2, and that
the mean squared error of the estimate is the lowest possible,
as will be shown in Theorem 3.

Theorem 2. Let x̂k|k be unbiased, then the input estimate
given by (5) is unbiased if and only if MkHk = I , and
consequently, rank(Hk) = p.

Proof. We observe from (2) and (5) that

d̂k = Mk(Ckx̃k|k +Hkdk + vk). (11)

By design, the state estimate is unbiased, i.e. E[x̃k|k] = 0
(see proof of Theorem 1), and the measurement noise is
assumed to have zero mean, E[vk] = 0. Hence, from (11),
E[d̂k] = dk, i.e. d̂k is unbiased, if and only if MkHk = I .
It follows that rank(Hk) = p is a necessary and sufficient
condition for the existence of an unbiased input estimate. �

Theorem 3. Let x̂k|k be unbiased and H>k R̃
?−1
k Hk be

nonsingular, where R̃?k := (I − CkLk)R̃k(I − CkLk)> is
also nonsingular. Then (5) is the best linear input estimate
(BLUE) for Mk given by

Mk = (H>k R̃
?−1
k Hk)−1H>k R̃

?−1
k (12)
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while the covariance matrix of the optimal input error
estimate and the cross-covariance matrix with x̃k|k are

P dk = (H>k R̃
?−1
k Hk)−1 (13)

P xdk = (P dxk )> = −P xk|kC>k M>k + LkRkM
>
k . (14)

Proof. Let ỹk := yk − Ckx̂k|k −Dkuk. From (2), we have

ỹk = Ckx̃k|k +Hkdk + vk = Hkdk + ek (15)

where ek is defined as ek := Ckx̃k|k + vk. The expected
value of ek is E[ek] = 0, since E[x̃k] = 0 (see proof of
Theorem 1) and E[vk] = 0, while its covariance matrix is

R̃?k : = E[eke
>
k ]

= CkP
x
k|kC

>
k +Rk + CkE[x̃k|kv

>
k ] + E[vkx̃

>
k|k]C>k

= (I − CkLk)R̃k(I − CkLk)> (16)

where we used (8) and the fact that E[x̃k|k−1v>k ] = 0 to
get E[x̃k|kv>k ] = (E[vkx̃

>
k|k])> = −LkRk. Following the

estimation approach outlined in [21, pp. 96-98], we can scale
(15) by the inverse of any matrix S satisfying R̃?k = SS>,
which exists for the positive semidefinite matrix R̃?k, to obtain

S−1ỹk = S−1Hkdk + S−1ek = S−1Hkdk + e?k

where E[e?k] = 0 and E[e?ke
?>
k ] = I . In this form, the Gauss-

Markov Theorem [21] assumption of a zero-mean e?k with
unit variance is satisfied. Hence, the best linear unbiased
estimator (BLUE) for d̂k is given by

d̂k =(H>k (S−1)>S−1Hk)−1H>k (S−1)>S−1ỹk

=(H>k R̃
?−1
k Hk)−1H>k R̃

?−1
k ỹk

:=Mk(Ckx̃k|k +Hkdk + vk)

where Mk is given by (12). Since MkHk =
(H>k R̃

?−1
k Hk)−1H>k R̃

?−1
k Hk = I , from (11), the input

estimate error, its covariance matrix and its cross-covariance
matrix with x̃k|k are as follows

d̃k = dk − d̂k = −Mkek

P dk = E[d̃kd̃
>
k ] = MkE[eke

>
k ]M>k = (H>k R̃

?−1
k Hk)−1

P xdk = E[x̃kd̃
>
k ] = −E[x̃k|kx̃

>
k|kC

>
k + x̃k|kv

>
k ]M>k

= −P xk|kC>k M>k + LkRkM
>
k �

Remark 2. Moreover, if wk and vk are white Gaussian
noises, then ek is white and Gaussian, and (5) is also the
minimum variance unbiased (MVU) input estimate.

V. COMPARISON WITH EXISTING LITERATURE RESULTS

A. With direct feedthrough and with rank(Hk) = p

1) Darouach, Zasadzinski and Boutayeb (2003) [9]: An
MVU state estimator is presented for a linear discrete-time
system with direct feedthrough was first considered in [9].
The optimal estimator filter derived in that paper assumes
that rank(

[
Ck+1Gk Hk+1

]
) = rank(Gk) + rank(Hk+1).

However, the unknown input is not reconstructed and hence
will not be compared to the new estimator proposed in this
paper. Note also that assumption of the optimal estimator
filter is more restrictive than the assumption of rankHk = p
employed in the current MVU input and state estimator.

2) Palanthandalam and Bernstein (2007) [11]: The state
and input estimator in [11], decouples the state and input
estimation process. It first constructs an MVU state estimator,
after which the unknown inputs are reconstructed, without
feeding the estimate back to the state estimator.

Remark 3. This construction implicitly assumes the invert-
ibility of Φ>k R̃

−1
k Φk, where R̃k = CkP

x
k|k−1C

>
k + Rk and

Φk :=
[
−Hk CkGk−1

]
. Since Ck+1P

x
k+1|kC

>
k+1 � 0,

and by assumption, Rk � 0, then R̃k � 0, implying that
the necessary condition for the invertibility of Φ>k R̃

−1
k Φk is

that rank(
[
−Hk CkGk−1

]
) = 2p, i.e rank(Hk) = p and

rank(CkGk−1) = p. Note that this is more restrictive than
the assumption of rankHk = p, assumed in this paper.

For the case without direct feedthrough, the reconstructed
inputs in [11] has been shown to be BLUE [13]. However,
in the case with direct feedthrough, as is the focus of this
paper, there is no evidence for the reconstructed inputs to
be BLUE. In fact, the authors have proposed two different
approaches for input reconstruction – one with and another
without a one step delay. To compare the “performance” of
both approaches for input reconstruction, we have derived the
input estimate error covariance matrices of both approaches

a) Input reconstruction with one step delay:

P dk−1 =G†k−1(L>k R̃
−1
k Lk)(G†k−1)> (17)

b) Input reconstruction without one step delay:

P d
k =H†k(I − CkLk)R̃k(I − CkLk)

>(H†k)
> = H†kR̃

?
k(H

†
k)
> (18)

Remark 4. Note the similarity of the input error covariance
matrix of the new MVU input and state estimator in (13)
and that of (18). Since the expression for P dk in (13) is
invertible, then the inverse and pseudoinverse coincide. Thus,
if the product of the matrices H>k R̃

?−1
k Hk has the prop-

erties required for (H>k R̃
?−1
k Hk)† = H†k(R̃?−1k )†(H†k)> =

H†kR̃
?
k(H†k)>, then the two input estimate error covariance

matrices coincide. However, this is in general not the case
because the above-mentioned property only holds if Hk has
full row rank. Therefore, we can infer that the MVU input
and state estimator proposed in this paper is of the kind
without one step delay. Moreover, assuming that the value of
both state error covariance matrices are the same, the input
reconstructed in [11] is also BLUE if Hk has full row rank.

3) Gillijns and De Moor (2007b) [14]: Similar to the
filter proposed in this paper, the MVU input and state
estimator in [14] uses a recursive three-step filter but
with different choices of the gain matrices, i.e. Mk =
(H>k R̃

−1
k Hk)−1H>k R̃

−1
k and Lk = P xk|k−1C

>
k R̃
−1
k (I −

HkMk), where R̃k = CkP
x
k|k−1C

>
k + Rk. At first glance,

this MVU input and state estimator is almost identical to
the one proposed in this paper. In fact, the assumption for
the existence of a solution is the same for both estimators,
i.e. rank(Hk) = p. The main difference lies in the input
estimation, which in this case is based on the propagated
state estimate, whereas the input estimator we proposed uses
the updated state estimate. However, unlike the approach
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in [11], input estimation is coupled with state estimation.
Most notably, all else being equal, the input error covariance
matrices of [14] and the estimator we proposed, differ only in
that the former contains R̃k and the latter (I−LkCk)R̃k(I−
CkLk)>. This difference is especially noteworthy because
the input estimate error covariance matrix is typically used
as a measure of performance of input estimation approaches.

4) Fang, Shi and Yi (2011) [16]: Most recently, an
estimator has been proposed in [16] to estimate the unknown
input and states of a linear discrete-time system with direct
feedthrough. The approach is “purely” predictive, in that the
unknown input estimated as a BLUE is used with a one step
delay. The state is then propagated based on the known and
estimated unknown input as well as the state estimate from
the previous step. In the state update step, the propagated
state estimate is also updated with the prediction error from
the previous step, as opposed to the current prediction error
commonly used in Kalman filtering. Similar to the filter in
[14] and the new filter we proposed, the only assumption
for the existence of a solution is that rank(Hk) = p,
which is less restrictive than [11]. However, this filter is
only near optimal. Although the state and input estimates
are unbiased, their variances are only “near minimum”, as
restructuring/modification of the filter matrices is necessary
to ensure numerical feasibility.

B. With direct feedthrough and with rank(Hk) < p

1) Hsieh (2009) [15]: The estimator in [15] presents an
approach to extend the results in [14] to systems with Hk

which does not have full column rank. However, this esti-
mator relaxes the unbiasedness condition for input estimates,
thus the input estimate is not BLUE or MVUE.

2) Cheng et al. (2009) [10]: The filter proposed in
[10] minimizes only the state estimate error variance, while
maintaining the unbiasedness of the estimate. However, the
strict assumption of [9] on the rank of

[
Ck+1Gk Hk+1

]
is

relaxed via singular value decomposition of Hk. However,
since the unknown input is not estimated, we are unable to
fully compare the performance of this filter in Section V-A.

VI. ILLUSTRATIVE EXAMPLES

This section considers a family of linear discrete-time
problems with direct feedthrough based on a simplified
version of the discretized DC motor system given in [22],
which is also used as a benchmark in [9], [15]:

Ak = α

[
−0.0005 −0.0084
0.0517 0.8069

]
; Bk =

[
0.1815
1.7902

]
; Dk =

[
0
0

]
;

Ck = ξ

[
1 0
0 1

]
; Gk = γ

[
0.0129
−1.2504

]
; Hk = η

[
2
0

]
;

Qk = χ

[
0.0036 0.0342
0.0342 0.3250

]
; Rk = ρ

[
0.5 0
0 0.16

]
where α = {0, 0.5, 1}, ξ = {0, 0.5, 1.2}, γ = {0, 0.5, 1.2},
η = {0.6, 0.8, 1.2}, χ = {0.1, 1.2, 10} and ρ =
{0.1, 1.2, 10} are system parameters which we vary for
studying the effect of parameter changes to estimator re-
sponses. The known and unknown inputs used in the follow-
ing simulations are
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Fig. 1. Actual states x1 and x2 and its estimates, as well as unknown
input d and its estimates.
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Fig. 2. Variance of estimate errors of states x1 and x2, and of unknown
input d – Px

11, Px
22 and P d of the various state and input estimators for

the first 50 time steps.

u[k] =

{
−0.3 k ≥ 50
0.5 otherwise

d[k] =

{
5 1 ≤ k ≤ 19, 70 ≤ k ≤ 100
0 otherwise.

To compare the performance of both input and state
estimates, we restrict our attention to (i) Palanthandalam-
Madapusi and Bernstein filter with one step delay (PB1D)
from Section V-A.2.a, (ii) Palanthandalam-Madapusi and
Bernstein filter without one step delay (PB0D) from Section
V-A.2.b, (iii) Gillijns and De Moor MVU estimator (GDM)
from Section V-A.3, (iv) Fang, Shi and Yi filter (FSY)
from Section V-A.4 and (v) the MVU estimator presented
in this paper (YZF) from Section IV. The simulations were
implemented in MATLAB on a 2.2 GHz Intel Core i7 CPU.

Figure 1 shows a comparison of the input and state
estimation of the five MVU estimators, when all the system
parameters are set to 1. In this case, all estimators considered
were reasonably successful at estimating the states as well as
the unknown inputs. On the other hand, Figure 2 shows the
variances of their states and input estimates, which we use
as a metric of estimator performance. Thus, we see that the
GDM and YZF estimators are better state estimators than the
PB1D, PB0D and FSY filters. For unknown input estimates,
the PB0D estimator is the worst, while the FSY, GDM and
YZF estimators are the best.

We tested the dependence of the filter performance on
system parameters with 18 simulation experiments with
different system parameter values and tabulated the results
in Table I. Unless otherwise specified, the default values of
the parameters are 1. From Table I, we observe that YZF
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TABLE I
STEADY-STATE PERFORMANCE OF PB1D, PB0D, GDM AND YZF (MINIMUM VALUE OF EACH TRIAL IN BOLD).

Parameter PB1D PB0D GDM FSY YZF
Px

11 Px
22 Pd Px

11 Px
22 Pd Px

11 Px
22 Pd Px

11 Px
22 Pd Px

11 Px
22 Pd

α
0 0.0044 0.1600 0.3102 0.0044 0.1600 0.1261 0.0021 0.1224 0.1255 0.0036 0.5213 0.1255 0.0021 0.1224 0.1255

0.5 0.0044 0.1600 0.3268 0.0044 0.1600 0.1261 0.0022 0.1237 0.1255 0.0036 0.5453 0.1255 0.0022 0.1237 0.1255
1 0.0044 0.1600 0.3767 0.0044 0.1600 0.1261 0.0024 0.1268 0.1256 0.0036 0.6114 0.1256 0.0024 0.1268 0.1256

ξ
0 N/A N//A N/A N/A N/A N/A 0.0037 1.4969 0.1250 0.0037 1.4969 0.1250 0.0037 1.4969 0.1250

0.5 0.0044 0.6400 0.8834 0.0044 0.6400 0.1253 0.0030 0.3462 0.1252 0.0036 0.7558 0.1252 0.0030 0.3462 0.1252
1.2 0.0044 0.1111 0.3251 0.0044 0.1111 0.1266 0.0022 0.0935 0.1258 0.0036 0.5893 0.1258 0.0022 0.0935 0.1258

γ
0 N/A N//A N/A N/A N/A N/A 0.0016 0.1143 0.1254 0.0036 0.4002 0.1254 0.0016 0.1143 0.1254

0.5 0.0044 0.1600 1.5070 0.0044 0.1600 0.1261 0.0019 0.1185 0.1255 0.0036 0.4563 0.1255 0.0019 0.1185 0.1255
1.2 0.0044 0.1600 0.2616 0.0044 0.1600 0.1261 0.0026 0.1302 0.1256 0.0036 0.7005 0.1257 0.0026 0.1302 0.1256

η
0.6 0.0044 0.1600 0.3767 0.0044 0.1600 0.3502 0.0030 0.1373 0.3493 0.0037 0.9683 0.3494 0.0030 0.1373 0.3493
0.8 0.0044 0.1600 0.3767 0.0044 0.1600 0.1970 0.0026 0.1311 0.1963 0.0036 0.7252 0.1964 0.0026 0.1311 0.1963
1.2 0.0044 0.1600 0.3767 0.0044 0.1600 0.0876 0.0022 0.1239 0.0872 0.0036 0.5489 0.0872 0.0022 0.1239 0.0872

χ
0.1 0.0005 0.1600 0.1897 0.0005 0.1600 0.1251 0.0004 0.1039 0.1251 0.0004 0.2998 0.1251 0.0004 0.1039 0.1251
1.2 0.0052 0.1600 0.4183 0.0052 0.1600 0.1263 0.0026 0.1295 0.1257 0.0044 0.6790 0.1257 0.0026 0.1295 0.1257
10 0.0434 0.1600 2.2476 0.0434 0.1600 0.1359 0.0052 0.1531 0.1263 0.0360 3.5634 0.1263 0.0052 0.1531 0.1263

ρ
0.1 0.0043 0.0160 0.2248 0.0043 0.0160 0.0136 0.0005 0.0153 0.0126 0.0036 0.3563 0.0126 0.0005 0.0153 0.0126
1.2 0.0044 0.1920 0.4105 0.0044 0.1920 0.1511 0.0025 0.1490 0.1506 0.0036 0.6656 0.1506 0.0025 0.1490 0.1506
10 0.0045 1.6000 1.8966 0.0045 1.6000 1.2511 0.0039 1.0386 1.2510 0.0039 2.9983 1.2510 0.0039 1.0386 1.2510

and GDM have the least variance in all categories, whereas
FSY is almost equally good in unknown input estimation.

On the other hand, the PB1D and PB0D filters fail when
ξ = 0 or γ = 0. In these cases, rank(CkGk−1) < p
which violates the assumptions of the filters (see Remark
3). Therefore, we conclude that the GDM, FSY and YZF
estimators are better estimators than the PB1D and PB0D
filters. It also appears that the performance of both the YZF
and GDM estimators are comparable. This is consistent with
the findings in the literature, since the GDM filter is shown
to be globally optimal in [23], while the state update law
of YZF filter proposed in this paper can be shown to be
a special case of the state estimator in [10] which is also
proven to be globally optimal.

VII. CONCLUSION
This paper presented a variation of an optimal filter that

simultaneously estimates the states and unknown inputs in
an unbiased minimum-variance sense for linear discrete-time
stochastic systems with direct feedthrough. We argued that
the information about the unknown input can be obtained
from the current time step as well as the previous one,
making it possible to estimate the unknown in different ways.
In contrast to previous filters which predicted the unknown
inputs based on the information in the previous step and a
hybrid of the current and previous step, the new filter we
proposed utilizes the most current updated state estimate
to compute the best linear unbiased estimate of the input.
Simulation results have shown that the new filter performs
just as well as the previous ones, if not better in all test trials.
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