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Abstract— In this paper, we develop a direct model reference
adaptive control framework for asymptotic adaptive tracking in
the presence of actuator input amplitude and rate constraints
for some classes of uncertain linear time-invariant systems and
nonlinear systems. This framework also allows for rejection of
bounded time-varying disturbances, without causing any chat-
ter in the control input. Moreover, positive (p, ;)-modification
is proposed to protect the control law from the actuator
saturation limits. The design is model-based and ensures global
asymptotic tracking for open-loop input-to-state stable systems,
while an estimate of the domain of attraction is derived for
local asymptotic tracking in the case of input-to-state unstable
systems. The approach is illustrated with examples.

I. INTRODUCTION

It is well known that in real control systems, uncertainties
in the form of disturbance signals and dynamic perturbations
are unavoidable. A mathematical model of any real system
is at best an approximation of the system dynamics, as we
often exclude high-frequency dynamics, nonlinearities in the
modeling and time variations of system parameter due to
wear-and-tear or changing environment. Furthermore, control
input constraints are inevitable in most practical applications
because of physical limitations of actuators. Even when
there are no constraints, it may be desirable to intentionally
impose limits, e.g., to avoid input chattering that can excite
unmodeled dynamics or cause plant damage.

Literature Review. Control design in the presence of input
saturation has been widely studied (see [1] for a chrono-
logical bibliography). However, the bulk of the research
effort is on known systems with actuator saturation limits,
with the exception of [2]-[12]. The idea of tracking an
adaptive reference model, i.e., with modifications to the
reference model dynamics to deal with control deficiencies
due to control amplitude saturation, is proposed by Monopoli
[2], without any formal stability proof. On the other hand,
[7] provides a rigorous proof and a domain of attraction
for stable/bounded tracking of linear time-invariant systems
without modifications to the reference model. The combi-
nation of these two was formalized in [9], [11] for linear
time-invariant systems to achieve asymptotic tracking of the
adaptive reference model and they further introduced positive
p-modification to guarantee that the control amplitude will
never incur saturation. The same approach is applied to
nonlinear systems in Brunovsky form in [11] to achieve
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stable/bounded tracking in the presence of bounded distur-
bances. However, the results in [7], [9], [11] do not consider
input rate saturation. On the other hand, [8], [10], [12] take
both amplitude and rate saturation into consideration but do
not explicitly construct the domain of attraction, or allow for
modifications for avoiding input amplitude or rate saturation
and for rejecting bounded disturbances.

Contributions. This paper extends the results of [9], [11] to
obtain asymptotic tracking for linear time-invariant systems
and nonlinear systems in Brunovsky form in the presence of
input amplitude and rate constraints. Input rate saturation is
considered by augmenting the reference signal by a higher
order signal, akin to the approach in [8], [12]. Moreover,
we propose an approach for rejecting bounded time-varying
disturbances, by further modifying the reference model to
include an error term associated with the tracking error, to get
a closed-loop reference model. Positive (p, ;1)-modification
is also introduced to avoid the amplitude and rate saturation
of the control. Similar to [7], [9], [11], we provide global
and local stability guarantees for open-loop input-to-state
stable and unstable systems, respectively. In the latter case,
we provide an estimate of the domain of attraction.

II. PROBLEM FORMULATION

We consider two classes of uncertain systems: linear time-
invariant systems, and nonlinear systems in Brunovsky form,
whose dynamics are defined in Sections III and IV. These
systems are assumed to be perturbed by bounded time-
varying disturbances, i.e., |d(-)| < dyaz- The control input
u € R to these systems is amplitude and rate limited:

ult) = umwsat(“C(t) ) it) = umaxsat(zc(t)) )

umaw max
with Jsat<s(t)) = { i(t)’ sl < f’ )
o asgn(s(t)), |[s(t)] >0,

and where u.(t) and its derivative 4. (t) represent the com-
manded control input, while w4, and t,,4, are the actuator
amplitude and rate saturation levels. We denote the control
amplitude and rate deficiencies as Au(t) := u(t) —u.(t) and
AU(t) := u(t) — U.(t); and assume that all system states x,,
are accessible and consider two cases, one in which ,, is
also measured and the other when &), is not accessible.

A. Positive (p, p)-modification

Motivated by [9], [11], we propose a control design
modification that protects the adaptive input signal from
amplitude and rate saturation. This is achieved by defining
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Umax — 5;“ Uphax = '[Lmam - 5p, Auc(t) =

uf{{awsat(ugft) ) —uc(t) and Adc(t) := uf{;axsat(w) _

X

Umaz Umaz
Uc(t), where 0 < 6, < Upmqy and 0 < J, < Upq, are
chosen constants. Then, the commanded input u.(t) and its

derivative u.(t) are chosen with implicit equations:
Ue(t) = ug(t) + pAuc(t) 3)
Uc(t) = 1, (t) + pAtc(l) “)
where u4(t) is the desired input before u-modification and
g, (t) the desired input rate after y-modification but before
p-modification!, which will be given for each class of
problems in Sections III and IV. The following lemma gives
the explicit solutions of u.(t) and u.(t).

Lemma 1: For pn > 0 and p > 0, the explicit solutions to
(3) and (4) Vt > 0 are given by:

ue(t) = ﬁ (ud(t) + 0t (”Zf” )) (5)

max

. 1 . .5 ud, L(t)
Uc(t) = f (ud,,i(t) + pu%axsat<1ﬁ:€m . (6)
Proof: The proof for u.(t) is given in [9], [11], and
the same proof applies for . (t). ]

Remark 1: The input amplitude and rate constraints need
not be symmetric. We can similarly have asymmetric limits
of u(t) and u(t), as well as derive the (p,u)-modified

command inputs by replacing Esat(ﬂ) with

s(t), c<s(t)<o
asat(s(t),o,7) =< 0, s(t) >7a (7
g, st)<ga

. . 5
where ¢ represents either wmin, Umin, Uiy = Umin + Ops

.5
or u, .

min = Umin + 0p; while & represents Umae, Umazs

) .5 .
Unhaz ‘= Umaz — 6;1, Or Unyaz = Umaz — §p~

B. Closed-loop higher-order adaptive reference model

Inspired by the approach in [2], the open-loop reference
model (ORM) is modified to include a control deficiency
feedback, which adaptively modifies the reference model,
and a tracking error feedback, which leads to a closed-
loop reference model. Furthermore, a higher-order reference
signal r is considered as in [8] to prevent input rate satura-
tion. Thus, in general, the closed-loop higher-order adaptive
reference model (CHARM) has the form:

i (1) = 25 (1) + a(Aug(t) + cle(t) ()

7 (t) = h(ra(t), Atg(t)) ©)
where 297 (t) is the open-loop reference model dynamics,
which is modified by an adaptive term a(Aug4(t)), as in
[9], [11], as well as two novel additions, namely a tracking
error feedback term c(e(t)), and a higher order dynamics of
r(t) given by h(rq(t), Atg(t)), with r4(t) being the desired
reference signal of the ORM, whereas the tracking error

I'This definition of the desired input rate is to be distinguished from Ud, o
which is before (p, p)-modification, and 14, which is the derivative of ug4
after p- but before p-modifications, defined later in the paper.

vector and deficiencies are defined as

e(t) == xz,(t) —zm(t) (10)
Aug(t) := Umazsat <Zc(t)> — ug(t) (11
Atig(t) == tmagsat (Z(t)> g (t).  (12)

C. Problem Statement

Problem 1: Given an open-loop reference model (ORM),
design an adaptive control signal?, u.(t), as well as the
modification terms of CHARM, i.e., the signals c(e(t)),
a(Aug(t)) and h(rq(t), Aug(t)) in (8), so that the state
xp(t) of an uncertain plant with input amplitude and rate
constraints asymptotically tracks the adaptively modified
reference model state x.,(t), while all signals of the plant
and reference model remain bounded.

Remark 2: The next two sections deal with stand-alone
classes of systems and the overlap in notations is intentional
in order to preserve the notations used in [9], [11].

III. CLASS 1: LINEAR TIME-INVARIANT SYSTEMS

We first consider linear time-invariant systems [9], [11]:
ap(t) = Apap(t) + bp(Au(t) + d(xp(1), 1)) (13)
where z, € R is the system state, A, is an unknown matrix,
by is a known constant vector. We assume that 0 < Ay, <
A < Ao and |d(0)| < dpnaa, with known Ayq. and dpaq-
Ideally, we would like to track the open loop reference
model (ORM), such that &, = Q%M = A, x,, + b,rqg.
However, if the ORM is infeasible due to the constraints on
the control input and the presence of exogenous disturbance,
modifications of the ORM in the form of the following
CHARM dynamics is considered:
T (t) = Am@m + b (r(t) + Ko (8) Aug(t))
+ ¢bysgn(e” (£) Pby) dinas
Fo(t) = Fult) + A(r(t) = ra(t))
Folt) + i Atia(t),  [ue(t)] < upkas
7;0(75) + %(?)Aud(t)y 'U/fr‘:ax < |Uc(t)| < Umaz
To(t), otherwise
where ¢ > 1, A, < 0, and Augy(t) and Adgy(t) are given by
(11) and (12). The introduction of the k., (t)Augy(t) term to
adaptively modify the ORM is first proposed in [2], [7], [9],
[11] to deal with control input amplitude constraints, whereas
the ¢bysgn(e? (t)Pb,)dmas and 7(t) terms are novel. The
former term is inspired by the disturbance rejection approach
in sliding mode control, but since this term is not included
in the control input as is done in sliding mode control, there
will be no input chattering, which is a desirable trait in many
practical applications. The latter term is motivated by [8],
[12] to deal with control input rate constraints, and with the
p-parametrization presented in Section II-A, the input rate
constraints can be avoided with a suitably large p.

(14)

i(t) =

2Note that only the commanded input u.(¢) is sent to the actuator; the
commanded input rate . (t) in (6) is an intermediate variable to obtain (12)
and is not explicitly implemented.



To solve Problem 1 for this class of systems, the following
assumptions are made:

Assumption 1 (Matching conditions): 3k}, k%, k, so that
by AEET = Ay — Ay, DyAES = by, bkl = b A (15)

Assumption 2: There exists R > 0 such that z, € Br :=
{zp ¢ ||zp|| £ R} and bpApmintmasr > Max, cpy d(zp,t).

From Assumption 1 and A, we obtain k) > k;. pip 1=
o (by b ) (b by) ~*. Next, control and adaptation laws are
derived for two different cases, one in which the state deriva-
tive &,, is accessible and another when #,, is inaccessible:

Case 1: X, (t) accessible. Since #,(t) is accessible, we

can choose the control and adaptation laws as:

ua(t) = kg (Oap(t) +he(Or(t), (16)
o (t) = kip (D) (1) + k7 (8)ay (8) + ko (D)7 () + K (87 (1)
ud,o(t); |u('(t)‘ < U?’rlta:z:
tau(t) =\ toiao(t), uar < ue(t)| < tmag  (17)
0, otherwise
() = ~Tap (T () Pbys forolt) = —,m(£)e” (1) P,
) _ 07 k'f’(t) < kr,min A kr,o(t) <0
() = { kyo(t), otherwise (18)

Fu(t) = yuAug(t)e” (t)Pby,
with wu.(t) and u.(t) given in (5) and (6), and where T',, =
Ff >0, v >0 and ~, > 0, while P = PT is the solution
of the algebraic Lyapunov equation AL P+ PA,, = —Q for
arbitrary @ > 0. The tracking error dynamics is given by
é(t) = Ape(t) + byA(EL (t)ay(t) + k (t)r(t)) (19)

by (8) Aug(t) +byd(z,(t), t) — dbpsgn(e” (t) Pby)dinas
where the parameter errors are defined as ko(t) := ko(t) —
k¥, ke(t) := k.(t) — kX and k,(t) := ky(t) — k. Thus, a
Lyapunov function for this system and its derivative are:

V(t) = €T (t)Pe(t) + Aka ()T, "k (t) + 7, B (1))
+ 7y ke (t)? (20)

V(t) < —eT(1)Qe(t) — 2™ () Pbysgn(e” (t)Pby)dmaq
+2¢" (1) Pbyd(xp, t) < —e” (£)Qe(t) <0 (21)

since ¢ > 1. This implies the boundedness of the signals
e(t), km(t), k,(t) and k,(t), and consequently, there exists
emazs K" and ke, such that for all ¢ > 0, [le(t)| <
em,w, Hk B < kmer, |k (t)] < kMo = @k, where
Y/ Amin (T I) To prove asymptotic convergence of
the tracking error to zero, it is essential to additionally show
the boundedness of either the plant or model states, i.e., 2, or
Z.,,. This can be shown to be globally true for stable systems
(i.e., A is Hurwitz) in the following theorem:
Theorem 1: For the plant dynamics in (13) that is stable
(i.e., A is Hurwitz), and with the CHARM dynamics in (14),
if Assumptions 1 and 2 hold, and %, (¢) is accessible, then

« the tracking error e(t) tends to zero asymptotically.

o If 3t* > 0 such that V¢ > t*, the amplitude and rate
constraints are not violated and d,,q, — 0 as t — oo,
then x,(¢) tends towards the open-loop reference model
signal 29FM (1) as t — oo.

Proof: Since the linear time-invariant system is stable
and the input u(t) and disturbance d(xp(t),t) are bounded,
2,(t) remains bounded. By applying Barbalat’s lemma, the
tracking error e(t) tends asymptotically to zero. Moreover,
convergence to the ORM holds because A, < 0. [ |

For unstable systems (i.e., A is not Hurwitz), we now show
the local asymptotic convergence of the tracking error to
zero, and characterize the domain of attraction of the unstable
systems in Theorem 2. For this, we introduce the following

notations: 7 := Amin(Q) — 2M| Ph, |3 ]|, 5 = /3D
— dmaz a0d U := MNmaz + Amaz-
Theorem 2: For unstable plant dynamics given by (13)
(with non-Hurwitz A) and CHARM dynamics given by (14),
assume that Assumptions 1 and 2 hold, #,(t) is accessible,
and the minimum and maximum of the desired reference
signal is such that —7,q, < 77" < 7rg(t) <77 < 1,
where T < 7/\;:]2”*(@,1& -
upper bound on 74(£) such that #7" < F4(t) < #T9 the

design parameter A, is chosen to satisfy the upper bound
DI 1+Tma:c Tmzn

T Brmar— (T i,m), and for arbitrary 0 <
0p < Umaz and 0< 5 < Umaz, the design parameters p
and p are selected such that the following lower bounds are
satisfied:

_ O 2Pl R + )+ (B 4 [k s
N0y

1
K(ﬁmax + CLI) - 27
P

dmac
A

. For a given lower and

given by A,

-2, p>

where
4]/ Pby |13 emazi® Amae (Te)

n
L 20lPbll R + DA+ Aol 1) + ey
n
(RO DG + Al (rmas +7000)),

1+
" (umaz + CI 1)

kr,mzn
If the system initial condition and the initial value of the
candidate Lyapunov function in (20) satisfy

£ (0)P(0) < A (P) (2120215)

A Amin(Q)7|k:| K¢
« VVO) <5 ( ST Py Tenmc )
then
o the adaptive system in (13), (14), (24) has bounded

solutions and |r(t)| < 7max, ¥Vt >0,
o the tracking error e(t) tends to zero aSQymptotically,
while 7 (£) Pa(t) < Amon(P) (2L22218)" v > 0,
o |uc(t)] < Umar and |4c(t)] < Umae, ie., control
amplitude and rate limits are avoided V¢ > 0, and
o if 3t* > 0 such that V¢ > t*, the amplitude and rate
constraints are not violated and d,,q, — 0 as t — oo,
then x,(¢) tends towards the open-loop reference model
signal zOFM (1) as t — oo.
Proof: The proof of the bounds on p, 7,4, and initial
2(0)T Px(0) and \/ 0) is identical to the proof of Theorem
5.1 in [9], w1th m“ added to the U4, term as in [11].
The lower bound on p can be derived in a manner similar

|ﬂd,u(t)‘ SCLI = + “Pbpl|ema17TTznax

DLl .—




to the bound on g in [9], [11] and is given in Appendix
A.1. On the other hand, the bound on A, is imposed to
ensure that 7*(t) < 0 when 7(t) > 71,4, and #t) > 0 when
r(t) < —Tmaz, Where we have applied |Ad| < |u(t)] +
lt1d,,(t)] < maz + C"' (See Appendix A.2). Furthermore,
the convergence to the ORM holds because A, < 0. |
Case 2: X,(t) not accessible. Given that &,(t) is not
accessible, we need to slightly modify (16) by introducing
an integrator in the controller and choose the control law as:

Ud,o(t) = k{(t) (Amay(t) + bmkgu(t)xp (t) + bk (t)u(t)
- ‘PbpSgn(ﬂ(t)kg(t)bp)dmaz) + kf(t)xp(t)
+ ke (D)7 () + Ky (£)76(t) — kaii(t) — €T Pbyky (1)

. s
ud,o(t)a |1fsc( )‘ < Unhax

udvﬂ(t) = ﬁ'&d,o(tL Umar < ‘uc( | < Umaz (22)
0, otherwise

da(t) = kg (1) (Amap(t) + bk, (2p(t) + buku(H)u(?)
— bysgn(A(t)k] (t)bp)dmaz) + ki (t)ay(t)  (23)
+ () () + Ky (D)7 (2) — kat(t) — €7 Pbyky (t)
where ¢ > 1, kg (t) is an estimate of KXk and kg is a
constant, positive parameter. Here, we have defined ug(t) =
kI (t)z,(t) + k.(t)r(t) as the “desired” input when i, is
accessible (cf. (16)), and the input error is defined as @(t) :=
uq(t) —wj(t), where u, is obtained by integrating (23) with
initial condition u4(0) = u%(0). Moreover, u.(t), %.(t) and
Aug(t) are given in (5), (6), (11) and (12). On the other
hand, the adaptation laws are chosen as:

ko (t) = —Tpy (£)eT (£)Phy, kyo(t) = —yor(t)el (t) Pb,

O ={ 0 e 00 2

Fu (1) = yu(Aua(t)e” (8) Pby, — u(t)a(t)k] ()b
+a(t)e’ (t)Pby,)

fewu(t) = —Tauwp (O)A(t)kL (£)br,
where T, =T% =0, T, =TL, =0, 7 >0 and v, > 0,
while P = P7 is the solution of the algebraic Lyapunov
equation AL P + PA,, = —Q for arbitrary Q > 0. The

tracking error and 1nput error dynamics can be written as
&(t) = Ame(t) + bpA(ky (8)xp(t) + kr(t)r(1)) + bkl ()

— b () Aua(t) + byd(w, (£),1) — $bysen(e” (1) Pby)dumas
i =k (0) (b KL ()2 () + by (Du(t) — byd(t) — kai(t)
— bysgn(@(OKY ()by)dmas) — €T (O Pbuku(t)  (29)

*

where the parameter errors are defined as k() := k, (t)—k?,

ko(t) = ko(t) = k7L ku(t) = ku(t) — Ky and kou(t) =
ko (t) — kKX, A Lyapunov function and its derivative are:
V(t) =eT (1) Pe(t) + Aka ()T R (8) + 7, R ()°)
% () + R (DT ke (8) + A(6)? - (26)
V(t) < —eT'(t)Qe(t) — 20eT (t) Pbysgn(el (t) Pb,)drmax

— 2a(t) kL (t)bpd(zp(t), ) + 2T (£) Pbyd(,(t), t)
— 2pu(t)kL (1)bysgn(@(t) kL (£)by)dmaz — 2kati(t)?

< —e"(t)Qe(t) — 2kzu(t)* <0 27

where ¢ > 1 and ¢ > 1, which implies the boundedness
of the signals e(t), kq(t), k.(t), ku(t), km( ) and a(t),
and consequently, there exists epqz, K2'*%, k797, k;{;“,
k;max and y,qe, such that for all ¢ > 0, |le (t)|| < €maz>
A(0)] < g (ke < K7, [epa(Dl] < K77,
|k ()] < B = ak™®®, where o := /Yy /Amin(Tz).
Similar to the first case, global asymptotic convergence of
the tracking error to zero can be shown for stable systems
with Hurwitz A, with identical claims as in Theorem 1, even
when %, is inaccessible. The proof is also identical, and
is omitted for brevity. For unstable systems (i.e., A is not
Hurwitz), we will again show its local asymptotic tracking
capability, and characterize its the domain of attraction. In
the analysis, 7, k, , & and 4 are as defined in the first case.
Theorem 3: For unstable plant dynamics (13) (with non-
Hurwitz A) and CHARM dynamics given by (14), assume
that Assumptions 1 and 2 hold, #,(t) is inaccessible, and
the minimum and maximum of the desired reference signal
is such that —7,,0, < 7" < ry(t) < 9% < prpo,, where
Tmaz < %ﬁ?‘ — d’"% — Umaz- FOr a given lower and
upper bound on 7q(t) such that 77" < 74(t) < 77 the
design parameter A, is chosen to satisfy the upper bound
given by A, 23511!1—(7::: T‘:i::;), and for arbitrary 0 <
0u < Umaz and 0 < 9, < Umaa, the design parameters u
and p are selected to satlsfy the following lower bounds:
NUAS 2| Pby || (ke + |[kz 1)) 4 B A (KD rmaa
N0y 5#

CI 2)

uma:r _ 2
)

> L (?
6M p 6p mam
where

i ()] < 12 = Pl emar @ Amas ()
S = =

n
+ R+ IR Am |+ 11om | (K52 + 1k EZ))

+ ”Pb}?”emaT’Y’frgnam

24| PY||
n

+ @llbpldmaz] + katimaz + emaz | Pom || (k7" + |K})
R DG Al (rmat 7))
1

tH (umaz + CI 2)

k‘r min

If the system initial condition and the initial value of the

Lyapunov function in (26) are as in Theorem 2, then the
same claims apply.

Proof: The proof of the bound on p and A, is given in
Appendix B.1 and B.2, while the rest of the proof is similar
to that of Theorem 2, with an additional consideration of
u(t), and are omitted due to space limitation. [ |

DLh2 .—

IV. CLASS 2: BRUNOVSKY FORM NONLINEAR SYSTEMS

The same principles as for the previous class of problems
can be applied for the design of an adaptive control approach
for nonlinear systems in Brunovsky form:

2V (t) = WS (x, (1)) + byu(t) + d(xp(1), 1) (28)
(n—1)y7
7,

where x,(t) = [2p,&p,...,Tp W is an unknown
vector, ®(x(t)) is a known vector and b, is an unknown
constant where by,qz > by > byin, > 0 and |d(1)| < diag-
bmin and d,,.. are assumed to be known. This leads to the



consideration of the following CHARM dynamics:

28 (1) = KT X () + b7 () + b(t) Aug(t)
+ psgn(e” (t)Pb)d,ax
7o(t) = 7a(t) + Ar ( ( ) = ra(t)) (29)
Folt) + 5 M. ()] < s
() =9 Fo(t) + (1+“)”(“ Nigy uphas < [ue(t)] < Uman
To(t), otherwise

where ¢ > 1, e(t) := x,(t) — x,,,(t) is the tracking error,
Xm = [Ty Ty - - x% 1)] k* is chosen such that A =

%TI is Hurwitz, b = [0 0 1]" and Aug(t)

and Adgy(t) are given by (11) and (12). As with the previous

class, we consider cases when ,,(t) is and is not accessible:
Case 1: x,(t) accessible. Given the accessibility of &, (),

we can choose the control law as:

(k3" (8) + b (1) = W(1) "B (x5 (1))

uq(t) = l;(t) (30)
= L (bt Tk i
Uq O(t) = i)(t)( b( ) d(t) +km p(t) + b O(t)
— W) T®(x,(t)) — W(t)"®(x,(1)))
d,ot), [uc(t)] < Unkas
tau(t) = § thotiao(t), uniar < [ue(t)] < tmaa GD

0, otherwise

with u.(t) and u.(t) given in (5) and (6). The tracking error
dynamics can then be written as

e(t) = Ae(t) = b(WT (1) 8(x,(1)) + b(t)u(t) — d(x,(t), 1)
+ ¢sgn(e’ (t)Pb)dmaz) (32)
where the parameter errors are b(t) = b(t) — b, and W (t) =
W (t) — W. The adaptation laws are chosen as:
W (t) = Ty ®(x, (t))e? () Pb,
bt) = st (242 )7 1
) = { 0. B Sbun Ab() <O oy
bo(t), otherwise

where I'yy = Fa, >~ 0 and v, > 0, while P = PT is the
solution to AP + PA = —Q for arbitrary Q >~ 0.
A Lyapunov function candidate and its derivative are:

V(t) = el (t)Pe(t) + W(t)TT 3 W (t) + ~, 'b(t)?
V(t) < —e”(t)Qe(t) — 2¢e” () Pbsgn(e” () Pb)daq
+2e”'(t) Pbd(z,(t),t) < —e (t)Qe(t) <0 (34)
with dg > 1, Whi~Ch implies the boundedness of the signals
e(t), b(t) and W(t), and consequently, there exist €maz,
brmar and Wmam, such that V¢ > 0, [le(®)|| < emans
W)l < Winae and [6(t)] < binaa-
Global asymptotic convergence of the tracking error to
zero can be shown for input-to-state stable systems when ),
is accessible, with identical claims and proof as in Theorem

1, thus, is not explicitly restated for the sake of brevity. But,
this does not hold when the system is input-to-state unstable.

In this case, we provide in Theorem 4 the characterization of
the domain of attraction for which local asymptotic tracking
can be achieved. We begin by introducing the following

_ 2bptmar—dmasl g [ Ama(P)
1= TR @2 P[] V Xmin(P)?
where we further assume that ||W/| < W,,,, and in the
operating region, d(x,,t) == [WT®(x,(t)) +d(x,(t),t)| <
WIS, (1))] + dnas < dmnazs [0 < Drnar
|®(x,(t))|| < Prae and that the upper bounds and by,qq
are known. Thus, [WT®(x,(t))| < WF** := dpmaz — dmaz
and Ja such that Wiaz + Winas = ab™” We also assume
that the control input authority is greater than the disturbance
input, formally stated as follows:

Assumption 3: There exists R > 0 such that x, € Br :=
{xp ¢ Ixp]l < R} and bpintmae > maxy, ey, d(Xp,t).

Theorem 4: For the plant dynamics given by (28) and
CHARM dynamics given by (29), assume that Assumption 3
holds, ,(t) is accessible, and the minimum and maximum
of the desired reference signal is such that —r,,4, < rg”” <
ra(t) < riP%T < Tyep, Where rp g < W —dmas
For a given lower and upper bound on 74(t) such that 77" <

7q(t) < 71", the design parameter A’} Iils chosen to satisfy
D +TTTIGKE T’VTLZ"I

the upper bound given by A, < — P ,dmm), and
for arbitrary 0 < 6, < Umaz and 0 < 0, < Umaz, the design
parameters p and p are selected such that the following lower
bounds are satisfied:

notations:

>||k;||HPb”n+bmrmax+W£WI Umazx _9
bmin(su 6#
1
P >7(umaw + CILl) -2
5%’
where

() <C™T = o e li{dlAl+ %2 1) Amin ()1 || PB|*

+ (bpUumas + dmz)} + b (P + |Ar|(Tmaas + 74 ""))
+ ||FW||(I)maxemaz”Pb” + ( maz + Wmaz) maz]
YoUmazCmaz Pb *
¢ tmazemaz PO ey /3L Pyl P + b
+ (Wm(mt + Wmax)(pmamL
pit . A+ wbmas
= b
If the system initial condition and the initial value of the
Lyapunov function in (34) satisfy

 XEO)Px,0) < Auin (PP
1 AnLin(Q)_QK’ h::,”;: "'m,a:l.'j;dvnaa:
- VO <5 ( 2250k [+b,0)

then similar claims as in Theorem 2 holds,
x;;r(t)Pxp(t) < Amin(P)0?|| Pb||%, vt > 0.

Proof: The proof of the bounds on i, 7,4, and initial
2(0)T Pz(0) and /V(0) is identical to the proof given in
[11]. The lower bound on p can be derived in a manner
similar to Appendix A.l1 for Theorem 2. Finally, the bound
on A, is imposed to ensure that 7*(t) < 0 when r(t) =
Tmae and 7t) > 0 when r(t) = —7y4,, Where we have
applied |Au| < |a(t)]|+|ia,,| < 2+” (umaz—i—CH 1) (similar
derivation as Appendix A.2). Slmllar to Theorem 2, A, <0
implies that x,(t) tends to the ORM if the amplitude and

(ttmax + C™1).

with



rate constraints are not violated, and d,, 4, — 0 as t — oo.
]

Case 2: X, (t) not accessible. We consider control and
adaptation laws that do not require the knowledge of %, (¢):

' = —kgu(t) — el b (3 uy
Ud,o(t) = —kat(t) (t)Pbb(t)Jr(;(t)( b(t)uy(t)

+ bmTo(t) = W T ®(x,(1) + (k2T — W (1) (x,(t)))

[On1 Tn-1] % ] )

WT(x,(t)) + b(t)u(t) — psgn(a(t) L(t))dmaz

. 5

udyo(t)a |7fsc(t)‘ < Urhaz

ﬁﬂd’o(t)’ u"f;ax < ‘Uc(t” < Umax (35)
0, otherwise

. _ ~1~L _eT 7 L _ 2 U*
a(t) = —kaii(t) — &7 (1) Pbb(t) + B(t)< bty

udyu (t) =

+ by (1) = W) @0 (1)) + (37 = W ()0 (x,(1)))
A 001 ] %, )
WTB0,0) + ) — GO L O] )

W(t) = Ty ®(x,(t)) (eT(t)Pb - L?“”)
l;o(t) = ’ybumaxsat<UC(t)> <eT(t)Pb -
Umax
fo { 0, B(t) < buin A Dolt) <0 a7
bo(t),
where ¢ > 1, kg is a constant, positive parameter, L(t) =
(kT -~ WT®' (x,(1))) [0 0 1]T is the last element
of kX7 — WT®'(x,(t)), ®(x,(t)) is the Jacobian matrix
of ®(x,(t)), T'w = I'f, = 0 and v, > 0, while P =
PT is the solution of the algebraic Lyapunov equation
ATP + PA = —Q for arbitrary Q@ > 0. In this case

where 1), is inaccessible, we defined the “desired” input as
uh(t) = (k:Txp(t)+bmr(£z;W(t)T<I>(xp(t))) (cf. (30)). and the
input error as u(t) := wuq(t) — u}(t), where u, is obtained
from integrating (36) with uy(0) = uw}(0). wc(t), @c(t),
Aug(t) and Adg(t) are as given in (5), (6), (11) and (12).
Then, the tracking error and input error dynamics are
é(t) = Ae(t) — b(VVT(t){)(xp(t)) + b(t)u(t) — b(t)a(t)
+ ¢Sgn(eT(t)Pb)dmaw - d<xp(t)7 t)) (33)
u(t) = %L(t)(VVT(t)‘I’(Xp(t)) +b(t)u(t) — d(xy(t).t)

— psgn(u(t) L(t))dmaz) — kat(t) — eT(t)PbI;(t) (39
where the parameter errors are b(t) = b(t) — b, and W (t) =
W (t) — W. A Lyapunov function and its derivative are:
V(t) = el (t)Pe(t) + W(t) T3 W (t) + v, 'b(t)? + a(t)?
V(t) < —e"(H)Qe(t) — 2kzi(t)* <0 (40)
since ¢ > 1 and p > 1,~ and this implies the boundedness of
the signals e(t), b(t), W (t), and a(t), and there exist €maz,
bmazs Winazr and Gpaz, such that V& > 0, |le(t)]] < emaz

otherwise

[W ()]| < Winaes [b(t)] < bmae and |a(t)] < Gmaz-

Once again, global asymptotic convergence of the track-
ing error to zero can be shown for input-to-state sta-
ble systems when the state derivative #, is inaccessible,
with identical claims and proof as in Theorem 1, thus,
is not restated for brevity. In the case that the system
is input-to-state unstable, we provide in Theorem 5 the
characterization of the domain of attraction for which local
asymptotic tracking can be achieved. The notations 7,
are as in the previous case, and we further assume that
[W| < Wyae and in the operating region, d(xp,t) =
(WTR(x,(t)) + d(xp(t),1)] < [WTR(x,(1))] + dimaz <
duaze |2 O] < oo ¥ (5(0) | < P that the
upper bounds and b,,,,, are known, and that Assumption 3
holds. Thus, |WTtI>(xp(t))| < WP = d, oz — dmae and
Ja such that Wae + Winae = ab™%,

Theorem 5: For the plant dynamics given by (28) and
CHARM dynamics given by (29), assume that Assumption 3
holds, &, (t) is inaccessible, and the minimum and maximum
of the desired reference signal is such that —7,,4, < rg”” <

bminAmin (@)1 _
ra(t) < Ty < Tmaz, Where rpq, < Qﬁbnlbﬁ n _

dmaz — bg”yi" ﬂmaz.. For a given lower and upper bound on

7q(t) such that 7" < 74(t) < 77'**, the design parameter

A, is chosen to satisfy the upper bound given by A, <
2DII’2+'f‘gLa17%ZI'in

S (T and for arbitrary 0 < §,, < Uaq and

0 <0, < Umazs the design parameters p and p are selected
such that the following lower bounds are satisfied:

‘k::HHPan + bmTmaz + W' Umaz + Umaz

s

-2
bmin(s# (5#
1
14 >*(umaw + CILQ) -2
dp
where

. 1 .
litg,u (8)| <C™2 = Uzl + (Winaz + Winaz) ®inaz) ($dmas

+ Amin(P)"]”PbH + (Wmaac + Wmaac)(bm(wc
+ (bmaz + bp)tumaz) + bm (7% + | Ar| (rmas + 7))
+ITw | 270 zemaz|| Pl + emaz || Pb]| (bp + bmaz)
¥ haimaa] + 20mezemae PO ey /5B o
+ b'meaac + (Wmaa: + Wmaa:)‘bmax]:
(1 + @)bmax (timaz + CII,2)_
b"’L

If the system initial condition and the initial value of the
candidate Lyapunov function in (40) are as given in Theorem
4, then the same claims also apply.

Proof: The proof of the bound on p and A, is similar
to Appendix B.1 and B.2. The rest of the proof is similar to
that of Theorem 4, with an additional consideration of (t),
and is omitted due to space limitation. [ ]

piL2 .

V. ILLUSTRATIVE EXAMPLES
1) Example of Linear Time-Invariant System [9], [11]:
&p(t) = 0.5z, + 2(u(t) 4+ 0.125(sin(0.5¢) + sin(2t)))
The CHARM dynamics was chosen as @, (t) = —6x,,(t) +
6(r(t) + ku(t)Aug(t)) + sgn(el (t) Pb)dma, with ra(t) =
0.7(sin(2¢t) + sin(0.4t)). The actuator limits are Upq, =



0.6 and g, = 1.5. Figure 1 shows the simulation of
this adaptive system with the following parameters and
initialization: 6, = 0.2Umaz, 0p = 0.2Umazs dmaz = 0.25,
b=2, Aoz =5 = krmin =06, A, = —10, Q = 7.5,
Yo=1v=1v=1%k =1, 2,0) =0, z,(0) =0,
T(O) = 7’d(o)7 kac(o) = -1, kr(o) =1, ku(o) =1,
kzu(0) =1, uq(0) = k5 (0)z,(0) + £,.(0)r(0).

2) Example of Nonlinear System (Brunovsky form) [11] :

ip(t) = WE®B(x,) 4 2u(t) 4+ 0.125(sin(0.5t) + sin(2t)),
W = [0.2,0.01,—1,-1,0.5] ",

T
@() = |:xp7 $27 6—10($p+0.5)2 , 6—10(9317_0.5)2 , Sin(pr):|

The CHARM dynamics was chosen as @y, (t) = —6x.,(t) +
6r(t) + b(t)Aug(t) + sgn(e? (t)P)dmas with the desired
reference signal rq(t) = 0.7(sin(2¢) + sin(0.4¢)). Figure 2
shows the simulation of this adaptive system with the follow-
ing parameters and initialization: u,q; = 0.94, Upmes = 2,
0u = 0.2Upaz, 0p = 0.2Umaws dmaz = 0.25, bmin = 1,
AT = —10, Q = 75, FW = 15, Yo = 1, xp(O) = 0,
2, (0) = 0, 7(0) = 74(0), W(0) = 0, b(0) = 1.5,
ua(0) = 555 (=625(0) + 6r(0) = W(0)7®(2,(0))).

In both examples, we observe the same tracking behavior.
We see from Figures 1(a) that the tracking error do not
asymptotically go to zero, if disturbances are not rejected.
On the other hand, if disturbance rejection is carried out
by a disturbance rejection term in the control input w(t)
(Figures 1(b)), we have significant input chattering, which
can be detrimental to many controlled systems. Note that
the chattering was not limited by the rate saturation in this
example, because this leads to a numerically stiff problem,
which would make implementation impractical.

By the introduction of CHARM, we are able to reject
bounded disturbances without any input chattering, as can be
observed from Figures 1(c)-(f) and 2(a)-(b). Thus, asymptotic
tracking of CHARM can be achieved in these cases without
any implementation difficulties. As expected, large values of
p and p result in avoidance of the control saturation limits,
albeit with large changes to the ORM dynamics. Moreover,
when comparing the cases in which &, (t) is accessible (Fig-
ures 1(c)-(d) and 2(a)) with the cases in which &, (¢) is not
accessible (Figures 1(e)-(f) and 2(b)), we note slightly higher
oscillations in the input rates, and also a marginal increase
of deviation from the ORM dynamics given by x9FM(t)
(green dash-dotted lines). Therefore, the knowledge of &, (t)
can be beneficial for achieving a modified trajectory that is
closer to the original reference trajectory.

VI. CONCLUSION

This paper proposed a novel approach to asymptotically
track a modified reference model (CHARM). For input-to-
state stable systems with limited input amplitude and rate,
we proved global tracking capability in the presence of
bounded disturbances, and provided regions of attraction for
input-to-state unstable systems. We also presented (p, ut)-
modification for preventing input amplitude and rate satura-
tion, and provided a means of disturbance rejection without
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Fig. 1. States, inputs and input rates for example V-.1.
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inducing input chattering. By means of numerical examples,
we illustrated the performance of this approach for uncertain
linear time-invariant and nonlinear systems.
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A. Bounds on p and A, in Theorem 2

1) Lower Bound on p: As with u, we seek a lower bound
on p such that @.(t) < Umqs. From (4) and (6), we obtain

B (0= itet) = ()= ersnt (2420 ) i 0)
S0 < 75 (it + lan®]) @)

Since p > 0, from (17),

ia w OIS Oy O+ (0] + K @01+ e (0)7(0)

<[|PbplemazAmaz (Ta) ||z ()|
I Pbyllemaserian + (2 + K1) (0]
+ (B 4 k) (P79 + | Ap| (Fmas + 779%))
where ||z, (t)] < 252l as shown in [9]. To bound d(t).

we rewrite the system dynamics as &,(t) = Apzp(t) —
bp kT2, () + bydu(t) + byd(zp(t),t). Then,

. . 1 X
l&p(8)]| < (JAm] + /\||bp|||\kg,-||)2||Ppru5 + [Ibp @
.6
Thus, (41) becomes |Au,(t)] < "”f%*pcm where CU1

is defined in Theorem 2. From definition, Augy =
2e()) _ . Hence, |ii(t)] < tighan + | At ()] <

3p
UrhazSat (

ufnm + i " In order that [te(t)] < tUmaz, Yt > 0,

P 1,1
3 umam+c | —
we require T 1=

3 (limaz + CM1) =2
2) Upper Bound on A,:
ummsat(%(t) —1q,,(t). Thus, we can bound |Ad,(t)] <
Umag + [Ud,u(t)| < tmae + CHL. In order to have |r(t)] <
Tmaz, V& > 0, we constrain A,, < 0 such that 7(t) < 0
when r(t) > 7pa. and 7(¢) > 0 when r(t) < —rias,
with the former requirement leading to 7(t) < 7" +
Ay (Trmae — r779%) + k1+‘f (ttmaz + CP1) < 0 and the latter
(t) > rmzn+A ( Tma _T.lrimn) k1+,u (umaaz +CI 1) >
0 i mln +A (’rnlax _|_7,mln> _"_ k

.5
<, =>p> i(uyﬁaz + Ch1) —

From definition, Adg(t

(umaaﬁ + OLl) <0.
Adding the two inequalities and rearranging, we obtain the
upper bound on A, given in Theorem 2.

B. Bounds on p and A, in Theorem 3

1) Lower Bound on p: Since p > 0 and |r(t)] < |7 (t)],
from (23),

lita,pu (8)] < Ve (8)ap (8)] + [er (£)r (8)] + [ (8)7(2)] + Keal@(t)]
+ kg () Ay (8)] + Kz ()bmkir (8)zp(1)]
+ lkL ()bp|dmaa + |€” () Pomku (t)]
< N1Pbyllemaz Amaz (L) 2 (O + | Pbp|lemazVrrmas
+ (BT R T 4 | A (Fmae + 75%7)) + kalimas
+ (Bmaz + 12 D[ Amll + l1om | (R + kw12 (2)]]
+ @lbplldimas] + emaz || Pbml| (k2" + [|k2 )
and ||z, (¢)] < 2E2L% Thus, (41) becomes |Adi(t)| <

.5
un’rjaz +CI’2
1+p

5, )
inition, Adg = umamsat(“:(t)> — 1,.. Hence,

Umax

where C12 is defined in Theorem 3. From def-
1c(t)] <

) . ) 2op 1,2

Urhaz + |AU(t)] < Urrae + % In order that
- Sp 1,2
uma1+c ’

[t (t )| < limag, V¢ > 0, we require “mest
P> E(ifar + C12) = 1 = L (tignas + C12) —

2 ) Upper Bound on A,.: Tfre upper bound on A can be
found as in Appendix A.2 with |1, (t)] < Ch2.

<5p:>



