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Abstract— This paper considers the problem of simulta-
neously estimating the states and unknown inputs of linear
discrete-time systems in the presence of additive Gaussian noise
based on observations from the entire time interval. A fixed-
interval input and state smoothing algorithm is proposed for
this problem and the input and state estimates are shown to
be unbiased and to achieve minimum mean squared error
and maximum likelihood. A numerical example is included to
demonstrate the performance of the smoother.

I. INTRODUCTION

State and input estimation of stochastic systems is impor-
tant to a number of applications found across a wide range
of disciplines. For example, in the state estimation problem
of vehicles at an intersection, the input of the other vehicle
is not available, and is not well modeled by a zero-mean
Gaussian white noise process, thus, the standard Kalman
filter and smoother cannot be applied. Other examples in
which the estimates of both the state and input are desirable
include real-time estimation of mean areal precipitation dur-
ing a storm [1], fault detection and diagnosis [2] and input
estimation in physiological systems [3].

Literature review. Filter algorithms estimate current values
of the variables of interest in real-time, whereas smoothing
algorithms post-process all measurements to also estimate
past values. Kalman filter [4] is the most widely used linear
filtering algorithm, while the most common fixed-interval
smoothing algorithm (a.k.a. Kalman smoother) is probably
the Rauch-Tung-Striebel (RTS) smoother [5], which has
the advantage of being computationally cheaper than the
forward-backward smoother [6]. However, these algorithms
are not applicable to systems with unknown inputs that
cannot be modeled as a zero mean Gaussian white noise.

Optimal filter algorithms for linear systems with unknown
inputs can be classified into those that only estimate the
system states [1], [7], [8] and those that simultaneously
estimate the unknown inputs and states [9]–[14]. In fact, most
state only estimators are shown to yield the same estimates as
the simultaneous input and state estimators [10], [11], [14],
which seems to make sense in hindsight.

On the other hand, to the best knowledge of the authors,
the only available input and state smoothing algorithm is
designed for nonlinear systems with unknown inputs [15].
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However, this algorithm makes an implicit assumption that
is equivalent to imposing a full rank condition on the system
direct feedthrough matrix, which is somewhat restrictive
(cf. [14]). Furthermore, neither an analytical solution nor
any claims of optimality were presented. Thus, an optimal
smoothing algorithm for linear stochastic systems with un-
known inputs is still lacking at present.

Contributions. This paper proposes a smoothing algorithm
for simultaneous estimation of input and states for linear
discrete-time stochastic systems with unknown inputs. The
proposed algorithm is an extension of the RTS smoother
[5] to allow for unknown inputs and consists similarly of a
forward and a backward pass. The forward pass is computed
with the optimal filter from a previous work [14], and in this
paper, we present an algorithm for the backward pass. Two
commonly used inference techniques are used to show that
the algorithm has many desirable properties. To be precise,
the estimates are shown to be unbiased and to achieve
minimum mean squared error and maximum likelihood.

II. PROBLEM FORMULATION

In this paper, we consider the linear time-varying discrete-
time stochastic system with unknown inputs

xk+1 = Akxk +Bkuk +Gkdk + wk

yk = Ckxk +Dkuk +Hkdk + vk
(1)

where xk ∈ Rn is the state vector at time k, uk ∈ Rm is
a known input vector, dk ∈ Rp is an unknown input vector,
and yk ∈ Rl is the measurement vector. The process noise
wk ∈ Rn and the measurement noise vk ∈ Rl are assumed to
be mutually uncorrelated, zero-mean, Gaussian white random
signals with known covariance matrices, Qk = E[wkw

>
k ] �

0 and Rk = E[vkv
>
k ] � 0, respectively. We assume that dk

is uncorrelated with {wk} and {vk} for all k, as well as
with {dj} for all j 6= k, i.e., dk is completely unknown and
cannot be predicted from the knowledge of dj for all j 6= k.
In addition, xk and dk are assumed to be jointly normally
distributed with non-informative priors, and as is observed
in [14], with means and covariances given by their unbiased
estimates and error covariance matrices. x0 is also assumed
to be independent of vk and wk for all k and is a Gaussian
vector with a mean π0 = E[x0] and covariance matrix Px

0 .
Without loss of generality, we assume throughout the

paper that n ≥ l ≥ 1, l ≥ p ≥ 0 and m ≥ 0, and that
the current time variable is strictly nonnegative. We also
assume that the matrices Ak, Bk, Ck, Dk, Gk and Hk =[
U1,k U2,k

] [Σk 0
0 0

] [
V >1,k
V >2,k

]
are known, and that the sys-



tem is strongly detectable and rank(U>2,kCkGk−1V2,k−1) =
p − rank(Hk−1) (such that there exists a stable minimum-
variance unbiased filter [14, Theorem 9]). This linear system
can also been viewed as a hidden Markov model (HMM)
with an infinite number of states that is “parameterized” by
the known and unknown inputs, as depicted in Fig. 1. Note
that only d1,N = V >1,NdN , which is the projection of dN that
is observable from yN , is included at the end of the Markov
chain (The reader is referred to [14] for its justification).

The problem we address is the simultaneous estima-
tion of xk and dk from the observations given by y0:N
and u0:N , where we denote the set of consecutive signals
{st0 , st0+1, . . . , stf } as st0:tf . The estimation problem is
commonly known as (i) filtering if k = N , (ii) smoothing
if k < N and (iii) prediction if k > N . While it may be
possible to consider all three cases above when there are no
unknown inputs, it is clear that without any knowledge of
the future dj for k + 1 ≤ j ≤ N , the prediction problem is
not possible (except when l = p = rank(Hk) for all k). A
previous work is dedicated to the optimal filtering problem
[14], but the optimal smoothing problem has not been solved;
thus, the objective of this paper is to develop an optimal
fixed-interval smoothing algorithm for linear discrete-time
stochastic systems with unknown input for which the state
and input estimates are unbiased and achieve minimum mean
squared error and maximum likelihood.
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Fig. 1: A hidden Markov model (HMM) “parameterized” by
uk and dk, with state transition Ak and emission probability
Ck. Shaded nodes are observed, while unshaded nodes are
hidden and to be estimated.

III. OPTIMAL SMOOTHING

We cast the problem of optimal smoothing (more specif-
ically, fixed-interval smoothing) as a problem of directly or
indirectly computing the joint distribution of the state xk
and (completely) unknown input dk, p(xk, dk|y0:N , u0:N ), at
time step k using measurements yk and known inputs uk up
to time N , where N > k. The result is a direct extension of
the Rauch-Tung-Striebel (RTS) smoother [5] to systems with
unknown inputs. Note the contrast to the joint distribution of
the optimal filtering problem given by p(xk, dk|y0:k, u0:k),
which itself is an extension of the Kalman filter [4]. As
with the RTS smoother, our proposed optimal smoothing
algorithm, ULISS (Updated Linear Input & State Smoother),
consists of two passes—forward and backward passes:

(i) Forward pass: This pass involves the filtering problem
which can be solved with the optimal filtering algorithm,

Algorithm 1 ULISS Algorithm

1: Initialize: x̂0|0 = E[x0]; P x
0|0 = Px

0 ; Â0 = A0 −
G1,0Σ−1

0 C1,0; Q̂0 = G1,0Σ−1
0 R1,0Σ−1

0 G>1,0 + Q0; d̂1,0 =
Σ−1

0 (z1,0−C1,0x̂0|0−D1,0u0); P d
1,0 = Σ−1

0 (C1,0P
x
0|0C

>
1,0 +

R1,0)Σ−1
0 ;

. Forward Pass
2: for k = 1 to N do

. Estimation of d2,k−1 and dk−1

3: Âk−1 = Ak−1 −G1,k−1M1,k−1C1,k−1;
4: Q̂k−1 = G1,k−1M1,k−1R1,k−1M

>
1,k−1G

>
1,k−1 + Qk−1;

5: P̃k = Âk−1P
x
k−1|k−1Â

>
k−1 + Q̂k−1;

6: R̃2,k = C2,kP̃kC
>
2,k + R2,k;

7: P d
2,k−1 = (G>2,k−1C

>
2,kR̃

−1
2,kC2,kG2,k−1)−1;

8: M2,k = P d
2,k−1G

>
2,k−1C

>
2,kR̃

−1
2,k;

9: x̂k|k−1 = Ak−1x̂k−1|k−1 + Bk−1uk−1 + G1,k−1d̂1,k−1;
10: d̂2,k−1 = M2,k(z2,k − C2,kx̂k|k−1 −D2,kuk);
11: d̂k−1 = V1,k−1d̂1,k−1 + V2,k−1d̂2,k−1;
12: P d

12,k−1 = M1,k−1C1,k−1P
x
k−1|k−1A

>
k−1C

>
2,kM

>
2,k

−P d
1,k−1G

>
1,k−1C

>
2,kM

>
2,k;

13: P d
k−1 = Vk−1

[
P d
1,k−1 P d

12,k−1

P d>
12,k−1 P d

2,k−1

]
V >k−1;

14: P xd
1,k−1 = −P x

k−1|k−1C
>
1,k−1M

>
1,k−1;

15: P xd
2,k−1 = −P x

k−1|k−1A
>
k−1C

>
2,kM

>
2,k

−P xd
1,k−1G

>
1.k−1C

>
2,kM

>
2,k;

16: P xd
k−1 = P xd

1,k−1V
>
1,k−1 + P xd

2,k−1V
>
2,k−1

. Time update
17: x̂?

k|k = x̂k|k−1 + G2,k−1d̂2,k−1;
18: P ?x

k|k = G2,k−1M2,kR2,kM
>
2,kG

>
2,k

+(I −G2,k−1M2,kC2,k)P̃k(I −G2,k−1M2,kC2,k)>;
19: R̃?

2,k = C2,kP
?x
k|kC

>
2,k + R2,k − C2,kG2,k−1M2,kR2,k

−R2,kM
>
2,kG

>
2,k−1C2,k;

. Measurement update
20: L̃k = (P ?x

k|kC
>
2,k −G2,k−1M2,kR2,k)R̃?†

2,k;
21: x̂k|k = x̂?

k|k + L̃k(z2,k − C2,kx̂
?
k|k −D2,kuk);

22: P x
k|k = (I − L̃kC2,k)G2,k−1M2,kR2,kL̃

>
k

+L̃kR2,kM
>
2,kG

>
2,k−1(I − L̃kC2,k)>

+(I − L̃kC2,k)P ?x
k|k(I − L̃kC2,k)>+ L̃kR2,kL̃

>
k ;

. Estimation of d1,k
23: R̃1,k = C1,kP

x
k|kC

>
1,k + R1,k;

24: M1,k = Σ−1
k ;

25: P d
1,k = M1,kR̃1,kM1,k;

26: d̂1,k = M1,k(z1,k − C1,kx̂k|k −D1,kuk);
27: end for

. Backward Pass
28: for k = N − 1 to 1 do
29: Jk =

[
P x
k|kA

>
k + P xd

k G>k
P dx
k A>k + P d

kG
>
k

]
(P ? x

k+1|k+1)−1;

30:

[
x̂k|N
d̂k|N

]
=

[
x̂k|k
d̂k

]
+ Jk(x̂k+1|N − x̂?

k+1|k+1);

31:

[
P x
k|N P xd

k|N
P dx
k|N P d

k|N

]
=

[
P x
k|k P xd

k

P dx
k P d

k

]
+Jk(P x

k+1|N − P ? x
k+1|k+1)J>k ;

32: end for

ULISE, in [14], from which the current name of the proposed
smoother is derived. From a single pass of ULISE, we can
obtain the forward pass estimates x̂k|k and d̂k, as well as
covariances P x

k|k, P dx
k = (P xd

k )> and P d
k for all k =

{1, 2, . . . , N − 1}, whereas for k = N , we only have x̂N |N
and P x

N |N , which we shall see are the only two quantities
needed to start the backward recursion.



(ii) Backward pass: The backward pass1 essentially uses
the output measurements of the future to further improve
the filtered state and input estimates. This can be seen in the
backward pass algorithm presented below, where the infor-
mation obtained from the difference between the smoothed
and predicted future state is used to improve the state and
input estimates from the forward pass. The backward pass
can be computed with the following:

Jk :=

[
J1,k
J2,k

]
=

[
P x
k|kA

>
k + P xd

k G>k
P dx
k A>k + P d

kG
>
k

]
(P ? x

k+1|k+1)−1

:=

[
J−1,k
J−2,k

]
(P ? x

k+1|k+1)−1[
x̂k|N
d̂k|N

]
=

[
x̂k|k
d̂k

]
+ Jk(x̂k+1|N − x̂?k+1|k+1)

(2)

[
P x
k|N P xd

k|N
P dx
k|N P d

k|N

]
= Jk(P x

k+1|N−P ? x
k+1|k+1)J>k +

[
P x
k|k P xd

k

P dx
k P d

k

]
,

where x̂k|k, x̂?k+1|k+1, d̂k, P x
k|k, P ? x

k|k , P dx
k = (P xd

k )> and
P d
k are computed by the forward pass with the ULISE algo-

rithm [14], while x̂k|N and d̂k|N are the unbiased smoothed
state and input estimates, and P x

k|N , P dx
k|N = (P xd

k|N )>

and P d
k|N are covariances of the smoothed estimates. The

backward in time recursion is started from the time step N−1
with x̂N |N and P x

N |N that are computed in the forward pass.
In the following theorem, we present some properties of

the smoothed input and state estimates:

Theorem 1. The discrete-time fixed interval smoother con-
sisting of the forward pass [14] and the backward pass given
in (2) minimizes the mean squared error and maximizes the
posterior likelihood of xk and dk for all k < N given all
observations up to time N . Thus, the smoothed estimates
are unbiased and achieve minimum mean squared error

(i.e.,
[
x̂k|N
d̂k|N

]
= E

[[
xk
dk

]
|y0:N , u0:N

]
) and also maximum

likelihood (i.e.,
[
x̂k|N
d̂k|N

]
= arg max

xk,dk

p

([
xk
dk

]
|y0:N , u0:N

)
).

Proof. The recursive backward pass equations in (2) can
be independently derived using two methods—minimum
mean squared error estimation and by maximum likelihood
estimation. Then, we will show that minimum mean squared
error estimates are unbiased, from which we conclude that
the stated properties hold. Both derivations will be presented
in detail in Section IV. �

Remark 1. From (2), we observe that if x̂k+1|N = x̂?k+1|k+1,
then the smoothed estimates cannot be further improved from
the filtered estimate. It can be shown by induction that this
is indeed the case when l = p = rank(Hk) for all k. In
fact, this is the (only) case when prediction is possible in
real-time and the filtered estimate is exactly the predicted

1The backward pass is to be differentiated from the backward filter,
as the former refers the use of future observations for updating the
filtered estimate from the forward pass, i.e., finding the joint distribution,
p(xk, dk|y0:N , u0:N ), whereas the latter refers to the application of for-
ward filter backward in time.

estimate; and with (2), we now establish that the filtered
estimate is also the smoothed estimate in this case.

Remark 2. A stable smoother exists whenever the corre-
sponding filter (forward pass) is stable, for which necessary
and sufficient conditions are given in [14].

The lag-one covariance smoother2 follows directly from
the derivation of the optimal smoother ((5) in Section IV).

Corollary 1 (Lag-One Covariance Smoother). The lag-one
covariance of the optimal smoother is given by

P x
k+1,k|N := E[(x̂k+1|N − xk+1)(x̂k|N − xk)>]

= P x
k+1|NJ

>
1,k

P xd
k+1,k|N := E[(x̂k+1|N − xk+1)(d̂k|N − dk)>]

= P x,s
k+1|k+1J

>
2,k,

(3)

where J−1,k and J−2,k are as defined in (2).

Remark 3. In the special case when there are no unknown
inputs (as is the case with the RTS smoother), the lag-one
covariance smoother is given by

P x
k+1,k|N = P x

k+1|N (P x
k+1|k)−1AkP

x
k|k,

which is a simpler expression when compared to the formu-
lation in [16, pp. 334–335] which involves recursions.

IV. FIXED-INTERVAL SMOOTHER ANALYSIS

In this section, we derive the backward pass equations (2)
using two different methods—via minimum mean squared
error estimation and maximum likelihood estimation. In the
first proof via minimum mean squared error estimation (a.k.a.
Bayesian least squares), the optimal estimate is given by the
expected value of xk and dk given all observations, i.e.,[
x̂MMSE
k

d̂MMSE
k

]
= E

[[
xk
dk

]
|y0:N , u0:N

]
(see, e.g. [17, Section

4.6]). To compute this, we seek the likelihood of the es-
timates of xk and dk and evaluate the expected value of
the likelihood function. In the second proof via maximum
likelihood estimation, as with the derivation of the RTS
smoother, we define a loss function for the problem and
find a smoothing solution that minimizes the posterior loss,
which in turn guarantees that the estimates attain maximum

likelihood
[
x̂MLE
k

d̂MLE
k

]
= arg max

xk,dk

p

([
xk
dk

]
|y0:N , u0:N

)
. By

inspection, it can be seen that both derivation methods
produce the same estimates as given in (2). Moreover, by
law of iterated expectations, the estimates are unbiased since

E
[[
x̂MMSE
k

d̂MMSE
k

]]
= E

[
E
[[
xk
dk

]
|y0:N , u0:N

]]
=

[
xk
dk

]
. Thus,

Theorem 1 holds.
Proof 1. (Minimum Mean-Squared Error Estimation) This
proof relies extensively on the properties of Gaussian distri-
butions given in Appendix A (Lemmas 1 and 2).

From the forward pass algorithm, ULISE, we first find the
joint probability of xk+1, xk and dk given y0:k′ and u0:k′ ,
where k′ is an intermediate step between k and k + 1 such

2This is a useful result that, e.g., enables the use of the EM-algorithm
for parameter estimation (similar to [16]). This is part of an ongoing work.



that dk can be entirely estimated, but before the estimate
of xk+1 can be updated (right after the filtering step in
Line 14 of Algorithm 1). Note that this corresponds to the
propagation/prediction step, which is before the update step
in ULISE, as described in [14, Section 4], in line with the
approach of the RTS smoother [5]. This joint probability is
computed in the forward pass (filtering) and is given by [14,
Sections 4 and 5]:
p(xk, dk, xk+1|y0:k′ , u0:k′)

= N


 xk
dk
xk+1

;

 x̂k|k
d̂k

x̂?k+1|k+1

,
 P

x
k|k P xd

k J−1,k
P dx
k P d

k J−2,k
J− >1,k J− >2,k P ? x

k+1|k+1


,
(4)

where J−1,k and J−2,k are as defined in (2), and x̂k|k, x̂?k+1|k+1,
d̂k, P x

k|k, P ? x
k|k , P dx

k = (P xd
k )> and P d

k are computed by
the forward pass. From the Markov property of the state
transition in (1) and by Lemma 2, we obtain

p(xk, dk|xk+1, y0:k′ , u0:k′) = p(xk, dk|xk+1, y0:k, u0:k)
= N

(
[x>k d>k ]>;µ′, P ′

)
,

where µ′ =

[
x̂k|k
d̂k

]
+ Jk(xk+1 − x̂?k+1|k+1) and P ′ =[

P x
k|k P xd

k

P dx
k P d

k

]
− JkP ? x

k+1|k+1J
>
k with Jk defined in (2).

Similarly, we obtain from the Markov property of the state
transition in (1) the following marginal distribution

p(xk, dk|xk+1, y0:N , u0:N ) = p(xk, dk|xk+1, y0:k, u0:k)
= N

(
[x>k d>k ]>;µ′, P ′

)
.

Next, assuming that we are given p(xk+1|y0:N , u0:N ) =
N (xk+1; x̂k+1|N , P x

k+1|N ), then by Lemma 1, we can find
the joint distribution of xk, dk and xk+1 given all the data

p(xk, dk, xk+1|y0:N , u0:N )
= p(xk, dk|xk+1, y0:N , u0:N )p(xk+1|y0:N , u0:N )
= N

(
[x>k+1 x

>
k d>k ]>;µ′′, P ′′

)
,

where by the property of joint density of Gaussian distribu-
tions given in Lemma 1, we find µ′′ and P ′′ as follows

µ′′ =

 x̂k+1|N[
x̂k|k
d̂k

]
+ Jk(x̂k+1|N − x̂?k+1|k+1)


P ′′ =

[
P x
k+1|N P x

k+1|NJ
>
k

JkP
x
k+1|N JkP

x
k+1|NJ

>
k + P ′

]
.

(5)

Finally, we find the joint marginal posterior distribution of xk
and dk using the property of marginal density of partitioned
Gaussians (with x = xk+1, y = [x>k d>k ]> in Lemma 2) as

p(xk, dk|y0:N , u0:N )=N
([

xk
dk

]
;

[
x̂k|N
d̂k|N

]
,

[
P x
k|N P xd

k|N
P dx
k|N P d

k|N

])

with
[
x̂k|N
d̂k|N

]
and

[
P x
k|N P xd

k|N
P dx
k|N P d

k|N

]
given by (2). Then, we

perform the backward recursion starting from the last time
step N − 1, where x̂N |N , x̂?N |N P x

N |N and P ? x
N |N . This

concludes the proof. �

Proof 2. (Maximum Likelihood Estimation) This proof is
based on the maximization of the log-likelihood for all
k < N (with non-informative priors for xk, xk+1, dk):

L(xk, dk, xk+1, y0:N , u0:N )=logP (xk, dk, xk+1|y0:N , u0:N )
= logP (xk, dk, xk+1, yk′+1:N |y0:k′ , u0:N )
− logP (yk′+1:N |y0:k′ , u0:N ). (6)

Then, using conditional probabilities, we observe that

P (xk, dk, xk+1, yk′+1:N |y0:k′ , u0:N )
= P (yk′+1:N |xk, dk, xk+1, y0:k′ , u0:N )

P (xk, dk, xk+1|y0:k′ , u0:N )
= P (yk′+1:N |xk+1, uk+1:N )P (xk, dk, xk+1|y0:k′ , u0:k′),

(7)

where the final equality is the result of the Markov property
of the system (cf. Figure 1) and P (xk, dk, xk+1|y0:k′ , u0:k′)
can be found using (4), derived in [14, Sections 4 and 5].

Substituting (4) and (7) into (6), we have

L(xk, dk, xk+1, y0:N , u0:N )

= −

 xk
dk
xk+1

−
 x̂k|k

d̂k
x̂?k+1|k+1

>
 P

x
k|k P xd

k J−1,k
P dx
k P d

k J−2,k
J− >1,k J− >2,k P ? x

k+1|k+1


−1 xk

dk
xk+1

−
 x̂k|k

d̂k
x̂?k+1|k+1


+ terms which do not involve xk and dk. (8)

Next, our goal is to obtain a backward recursion to find the
maximum likelihood estimates of x̂k|N and d̂k|N given the
estimate x̂k+1|N . It follows from (8) that x̂k|N and d̂k|N are
the solution that minimizes the following loss function:

J = [(xk − x̂k|k)> (dk − d̂k)> (x̂k+1|N − x̂?k+1|k+1)>] P
x
k|k P xd

k J−1,k
P dx
k P d

k J−2,k
J− >1,k J− >2,k P ? x

k+1|k+1


−1  xk − x̂k|k

dk − d̂k
x̂k+1|N − x̂?k+1|k+1


=


[
xk − x̂k|k
dk − d̂k

]
x̂k+1|N − x̂?k+1|k+1

> Λ


[
xk − x̂k|k
dk − d̂k

]
x̂k+1|N − x̂?k+1|k+1


=

[
xk − x̂k|k
dk − d̂k

]>
Λ−111

[
xk − x̂k|k
dk − d̂k

]
+(x̂k+1|N − x̂?k+1|k+1)>Λ−122 (x̂k+1|N − x̂?k+1|k+1)

+

[
xk − x̂k|k
dk − d̂k

]>
Λ−112 (x̂k+1|N − x̂?k+1|k+1)

+(x̂k+1|N − x̂?k+1|k+1)>(Λ>12)−1
[
xk − x̂k|k
dk − d̂k

]
, (9)

where Λ :=

[
Λ11 Λ12

Λ>12 Λ22

]
can be obtained using the block-

wise matrix inversion formula given in Appendix B:

Λ11 =

([
P x
k|k P xd

k

P dx
k P d

k

]
−
[
J−1,k
J−2,k

]
P ? x
k+1|k+1

[
J−1,k
J−2,k

]>)−1
Λ12 = −Λ11

[
J−1,k
J−2,k

]
P ? x
k+1|k+1

Λ22 =

(
P ? x
k+1|k+1 −

[
J−1,k
J−2,k

]> [
P x
k|k P xd

k

P dx
k P d

k

] [
J−1,k
J−2,k

])−1
.



Setting the gradient of J in (9) to zero, we obtain the esti-
mates of x̂k|N and d̂k|N as is given in (2). Next, subtracting[
xk
dk

]
from both sides of (2) and rearranging, we have[
x̃k|N
d̃k|N

]
+ Jkx̂k+1|N =

[
x̃k|k
d̃k|k

]
+ Jkx̂

?
k+1|k+1 (10)

Using the following facts:

E[x̂k+1|N x̂>k+1|N ] = E[xk+1x
>
k+1]− P x

k+1|N
E[x̂?k+1|k+1x̂

?>
k+1|k+1] = E[xk+1x

>
k+1]− P ?x

k+1|k+1

E
[[
x̃k|N
d̃k|N

]
x̂>k+1|N

]
= E

[[
x̃k|k
d̃k|k

]
x̂?>k+1|k+1

]
= 0,

where the last fact is a result of the orthogonality principle
of minimum mean square error estimation (see, e.g., [18,
Section 4.2]), we obtain the recursive equation for the error
covariance of the smoothed estimates given in (2); hence,
this completes the proof. �

V. ILLUSTRATIVE EXAMPLE

In this example, we consider the fault identification and
state estimation problem when the system dynamics is af-
flicted by disturbances or faults, dk, that can either affect the
system dynamics through the input matrix Gk or the outputs
through the direct feedthrough matrix Hk. Thus, the objective
is to estimate the states of the system and to identify the
faults that the system is experiencing for continued operation
or self-repair. Specifically, the linear discrete-time problems
we consider are based on the system given in [14]:

A =


0.5 2 0 0 0
0 0.2 1 0 1
0 0 0.3 0 1
0 0 0 0.7 1
0 0 0 0 0.1

 ;
B = 05×1;
C = I5;
D = 05×1;

G =


1 0 −0.3
1 0 0
0 0 0
0 0 0
0 0 0

 ; Q = 10−4


1 0 0 0 0
0 1 0.5 0 0
0 0.5 1 0 0
0 0 0 1 0
0 0 0 0 1

 ;

R = 10−2


1 0 0 0.5 0
0 1 0 0 0.3
0 0 1 0 0

0.5 0 0 1 0
0 0.3 0 0 1

 ;

with six different H matrices

H1 =


0 0 1
0 0 0
0 1 0
0 0 0
0 0 0

;H2 =


0 0 1
0 0 0
0 1 0
0 0 0
1 0 0

;H3 =


0 0 0
0 0 0
0 1 0
0 0 0
1 0 0

;

H4 =


0 0 0
1 0 0
0 1 0
0 0 0
0 0 0

;H5 =


0 0 0
0 0 0
0 1 0
0 0 1
0 0 0

;H6 =


0 0 0
1 0 0
0 1 0
0 0 1
0 0 0

;
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Fig. 2: Actual states x1, x2, x3, x4, x5 and their estimates,
as well as unknown inputs d1, d2 and d3 and their estimates.
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Fig. 3: Trace of estimate error covariance of states, trace(P x),
and unknown inputs, trace(P d).

to illustrate the effect of parameter changes on the per-
formance of the backward and forward passes of ULISS.
With the above H matrices, the invariant zeros of the
systems are respectively {0.3, 0.8}, {0.1, 0.3, 0.5, 0.7, 0.8},
∅, {0.3,−0.8}, ∅ and {0.1, 0.7, 0.3,−0.8, 0.35}. Thus, all
six systems are verified to be strongly detectable.

The unknown inputs used in this example are

dk,1 =

{
1, 500 ≤ k ≤ 700
0, otherwise

dk,2 =

{
1

700
(k − 100), 100 ≤ k ≤ 800

0, otherwise

dk,3 =

 3, 500 ≤ k ≤ 549, 600 ≤ k ≤ 649, 700 ≤ k ≤ 749
−3, 550 ≤ k ≤ 599, 650 ≤ k ≤ 699, 750 ≤ k ≤ 799
0, otherwise.

The simulations were implemented in MATLAB on a 2.2
GHz Intel Core i7 CPU. Figure 2 shows a comparison of
the input and state estimates of the forward and backward
passes, i.e., of the filtered and smoothed estimates for the
last system with H6. As expected, the smoothed estimates
are better than the filtered estimates, given that the smoothing
algorithm is designed to improve on the filter estimates by
considering the observations of the entire time interval. This
improvement is more apparent from Figure 3, when the traces
of the estimate error covariance of the forward and backward
passes are compared. Furthermore, the same trend is seen in
the results of all six systems in Table I, regardless of the
rank of the direct feedthrough matrix, Hk. Note that even
in the fourth case with H4, there is an improvement of the
smoothed estimates over the filtered ones, although it is not
apparent due to the process of rounding to four decimal
places. However, it can also be observed that the amount
of improvement of the smoothed estimates over the filtered
estimates does depend on the system at hand.



TABLE I: Minimum estimate variance over the entire time
interval of forward (ULISE) and backward (ULISS) passes.

Px
11 Px

22 Px
33 Px

44 Px
55 Pd

11 Pd
22 Pd

33

H1 ULISE 0.1843 0.0091 0.0002 0.0004 0.0001 0.0099 0.0102 0.1923
ULISS 0.1843 0.0091 0.0002 0.0004 0.0001 0.0099 0.0102 0.1922

H2 ULISE 0.1494 0.0052 0.0002 0.0004 0.0001 0.0097 0.0102 0.1574
ULISS 0.1485 0.0048 0.0002 0.0004 0.0001 0.0047 0.0102 0.1565

H3 ULISE 0.0076 0.0052 0.0002 0.0004 0.0001 0.0097 0.0102 0.3906
ULISS 0.0076 0.0048 0.0002 0.0004 0.0001 0.0047 0.0102 0.3836

H4 ULISE 0.0076 0.0257 0.0002 0.0004 0.0001 0.0348 0.0102 0.4925
ULISS 0.0076 0.0257 0.0002 0.0004 0.0001 0.0348 0.0102 0.4925

H5 ULISE 0.0079 0.0074 0.0002 0.0004 0.0001 0.0089 0.0102 0.0099
ULISS 0.0070 0.0030 0.0002 0.0004 0.0001 0.0039 0.0102 0.0099

H6 ULISE 0.0076 0.0218 0.0002 0.0004 0.0001 0.0309 0.0102 0.0097
ULISS 0.0075 0.0054 0.0002 0.0004 0.0001 0.0074 0.0102 0.0096

VI. CONCLUSION
This paper presented an optimal smoothing algorithm for

simultaneously estimating the states and unknown inputs of
linear discrete-time stochastic systems based on all obser-
vations in a fixed interval. The input and state smoother
is derived using widely used methods of minimizing mean
squared error and maximizing likelihood. The resulting esti-
mates are unbiased and achieve minimum mean squared error
and maximum likelihood. Simulation results have shown a
clear improvement of the input and states estimates when
compared to the filtered estimates in all test cases.
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APPENDIX

A. Properties of Gaussian Distribution

The following are properties of Gaussian distributions (for
proofs, see e.g., [19, pp.85-93]:

Lemma 1 (Joint density of Gaussian variables). Given Gaus-
sian random variables x and y described by x ∼ N (x;µ, P )
and y|x ∼ N (y;Fx+ g,R), the joint density of x and y is[

x
y

]
∼ N

([
x
y

]
;

[
µ

Fµ+ g

]
,

[
P PF>

FP FPF> +R

])
.

Lemma 2 (Conditional and marginal densities of partitioned
Gaussians). Given a joint Gaussian distribution with density[

x
y

]
∼ N

([
x
y

]
;

[
a
b

]
,

[
A C
C> B

])
,

then, the conditional and marginal densities of x and y are:

x|y ∼ N (p; a+ CB−1(y − b),A− CB−1C>)

y|x ∼ N (q; b+ C>A−1(x− a),B − C>A−1C)
x ∼ N (x; a,A), y ∼ N (y; b,B).

B. Block Matrix Inversion

A well known analytical block matrix inversion formula
is given in the following lemma:

Lemma 3 (Block Matrix Inversion). Given a matrix M =[
A B
C D

]
with invertible A and D, its inverse M−1 :=[

M̂11 M̂12

M̂21 M̂22

]
can be found with

M̂11 = (A− BD−1C)−1

= A−1 +A−1B(D − CA−1B)−1CA−1

M̂12 = −(A− BD−1C)−1BD−1

= −A−1B(D − CA−1B)−1

M̂21 = −D−1C(A− BD−1C)−1

= −(D − CA−1B)−1CA−1

M̂22 = D−1 +D−1C(A− BD−1C)−1BD−1

= (D − CA−1B)−1.


