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Abstract— In this paper, we propose inference algorithms for
simultaneously estimating the mode, input and state of hidden
mode switched linear stochastic systems with unknown inputs.
First, we define the generalized innovation for the recently pro-
posed optimal filter for simultaneous input and state estimation
[1] and show that the sequence is a Gaussian white noise. Then,
we utilize this whiteness property of the generalized innovation,
which reflects the estimation quality to form the likelihood
function of the system model. Consequently, we employ the
multiple model (MM) approach based on the likelihood function
for inferring the hidden mode of switched linear stochastic
systems. Algorithms for both static and dynamic MM estimation
are presented and compared using a simulation example of
vehicles at an intersection with switching driver intentions.

I. INTRODUCTION

Most autonomous systems must operate without knowl-
edge of the intention and the decisions of other non-
communicating systems or humans. Thus, in many instances,
these intention and control decisions need to be inferred
from noisy measurements. This problem can be conveniently
considered within the framework of hidden mode hybrid
systems (HMHS, see, e.g., [2], [3] and references therein)
with unknown inputs, in which the system state dynamics
is described by a finite collection of functions. Each of
these functions corresponds to an intention or mode of the
hybrid system, where the mode is unknown or hidden and
mode transitions are autonomous. In addition, by allowing
unknown inputs in this framework, both deterministic and
stochastic disturbance inputs and noise can also be consid-
ered. There are a large number of applications, such as urban
transportation systems, target tracking and fault detection, in
which it is not realistic to assume knowledge of the mode
and disturbance inputs or they are too costly to measure.

Literature review. The filtering problem of hidden mode
hybrid systems without unknown inputs have been exten-
sively studied (see, e.g., [4], [5] and references therein),
especially in the context of target tracking applications.
These filtering algorithms, which use a multiple model
approach, consist of three components: (i) a bank of filters
for each mode, (ii) a likelihood-based approach to determine
the probability of each mode, and (iii) a hypothesis man-
agement algorithm to trade off between computational cost
and estimation quality. Oftentimes, the Kalman filter [6] or a
variation thereof is used as the filtering algorithm, while the
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likelihood-based mode association typically uses the white-
ness property of the innovation [7], [8]. On the other hand,
some popular hypothesis merging algorithms include the
first- and second-order generalized pseudo-Bayesian (GPB1
and GPB2) as well as the interacting multiple model (IMM)
algorithms [4], [9]. However, oftentimes the disturbance
inputs cannot be modeled as a zero-mean, Gaussian white
noise, which gives rise to a need for an extension of the
existing algorithms to hidden mode hybrid systems with
unknown inputs. To the best of our knowledge, this problem
has not been addressed in the literature.

To develop a multiple model estimation approach for
switched linear stochastic systems with unknown inputs,
each component of the approach has to be reinvented. A
filter algorithm for stochastic systems with unknown inputs
is needed for the first component; thus, a relevant set of
literature is that of optimal filters that simultaneously es-
timate inputs and states of linear stochastic systems with
unknown inputs. Research on simultaneous input and state
estimation has been gaining momentum during the past
years, largely stimulated by its wide applications. Notable
algorithms include [1], [10]–[12]. Of all these algorithms,
the optimal filter in [1] is in the most general form and is
hence the most suitable for the problem at hand. However,
the remaining two major components of the multiple model
estimation approach are still lacking at present.

Contributions. In this paper, we present a novel multiple
model approach for simultaneous estimation of mode, input
and state of switched linear stochastic systems with unknown
inputs. As with multiple model estimation of systems without
unknown inputs, we also present static and dynamic vari-
ants (i.e., decoupled and with cooperation between models,
respectively) of the estimation algorithm. In both variants,
a bank of optimal input and state filters [1], one for each
mode, is run in parallel. Next, we devise a likelihood-based
mode association algorithm to determine the probability of
each mode. This involves the definition of a generalized
innovation which we prove is a Gaussian white noise. Then,
we use this whiteness property to form a likelihood function,
which is used in hypothesis testing. For the dynamic variant
(with cooperating models), to manage the growing number
of hypotheses, we employ a similar approach to the inter-
acting multiple model estimator [9] which mixes the initial
conditions based on mode transition matrix probabilities.

II. MOTIVATING EXAMPLE

To motivate the problem considered in this paper, we
consider the scenario of vehicles crossing a 4-way inter-
section where each vehicle does not have any information



about the intention of the other vehicles. To simplify the
problem, we consider the case with two vehicles: Vehicle A
is human driven (uncontrolled) and Vehicle B is autonomous
(controlled), with dynamics described by ẍA = −0.1ẋA+d1

and ẍB = −0.1ẋB +u, where x and ẋ are vehicle positions
and velocities. We assume1 that Vehicle A approaches the
intersection with a default intention, i.e., without considering
the presence of Vehicle B. Then, at the intersection, the driver
of Vehicle A can choose between three intentions:
• to continue while ignoring the other vehicle with an

unknown input d1 (Inattentive Driver, default mode),
• to attempt to cause a collision (Malicious Driver), or
• to stop (Cautious Driver).

Then, once either vehicle completes the crossing of the
intersection, Vehicle A returns to the default intention.

Thus, if we assume the presence of noise, this intersection-
crossing scenario is an instance of a hidden mode switched
linear stochastic system with an unknown input. The inten-
tion of driver A is a hidden mode and the actual input of
vehicle A is an unknown input (which is not restricted to
a finite set). The objective is to simultaneously estimate the
intention (mode), input and state of the vehicles for safe
navigation through the intersection.

III. PROBLEM STATEMENT

We consider a hidden mode switched linear stochastic
system with unknown inputs:

(xk+1, qk)= (Aqkk xk+B
qk
k u

qk
k +Gqkk d

qk
k +wqkk , qk), xk ∈ Cqk

(xk, qk)+= (xk, δ
qk(xk)), xk ∈ Dqk

yk = Cqkk xk+D
qk
k u

qk
k +Hqk

k d
qk
k +vqkk (1)

where xk ∈ Rn is the continuous system state and qk ∈
{1, 2, . . . , N} the hidden discrete state or mode. For each
mode qk, uqkk ∈ Uqk ⊂ Rm is the known input, dqkk ∈ Rp
the unknown input, y ∈ Rl the output, δqk(·) the mode
transition function, Cqk and Dqk are flow and jump sets, while
the process noise wqkk ∈ Rn and the measurement noise
vqkk ∈ Rl are assumed to be mutually uncorrelated, zero-
mean, Gaussian white random signals with known covariance
matrices, Qqkk = E[wqkk w

qk>
k ] � 0 and Rqkk = E[vqkk v

qk>
k ] �

0, respectively. The matrices Aqkk , Bqkk , Gqkk , Cqkk , Dqk
k and

Hqk
k are known. x0 is assumed to be independent of vqkk and

wqkk for all k. No prior ‘useful’ knowledge of the dynamics
of dqkk is assumed (uncorrelated with {dqjj }, ∀j 6= k, as well
as {wqjj } and {vqjj }, ∀j) and dqkk can be a signal of any type.

Moreover, the mode jump process is assumed to be left-
continuous and hidden mode systems refer to systems in
which qk is not directly measured and the mode transitions
are autonomous. We assume that in each mode, the system
has strong detectability, i.e., the initial condition x0 and
the unknown input sequence {dqjj }r−1

j=0 can be uniquely
determined from the measured output sequence {yi}rj=0 of
a sufficient number of observations, i.e., r ≥ r0 for some
r0 ∈ N (see [1, Section 3.2] for necessary and sufficient
conditions for this property) and the required rank condition
for the existence of a stable filter [1, Theorem 9] is satisfied.

1The assumed permutation of intentions is for illustrative purposes only
and was not a result of any limitations on the proposed algorithms.

The objective of this paper2 is to design an optimal
recursive filter algorithm which simultaneously estimates the
system state xk, the unknown input dqkk and the hidden mode
qk based on the measurements up to time k, {y0, y1, . . . , yk}.

IV. PRELIMINARY MATERIAL

In this section, we present a brief summary of the
minimum-variance unbiased filter for linear systems with
unknown inputs. For detailed proof and derivation of the
filter, the reader is referred to [1]. Moreover, we define a
generalized innovation and show that it is a Gaussian white
noise. These form an essential part of the multiple model
estimation algorithm that we will describe in Section V. The
algorithm runs a bank of N filters (one for each mode)
in parallel and each of the the filter are in essence the
same except for the different sets of matrices and signals
{Aqkk , B

qk
k , C

qk
k , D

qk
k , G

qk
k , H

qk
k , Q

qk
k , R

qk
k , u

qk
k , d

qk
k }. Hence,

to simplify notation, the conditioning on the mode qk is
omitted in the entire Section IV.

A. Minimum-Variance Unbiased Filter
As is shown in [1, Section 3.1], the system for each mode

after a similarity transformation is given by:

xk+1 = Akxk +Bkuk +G1,kd1,k +G2,kd2,k + wk (2)
z1,k = C1,kxk +D1,kuk + Σkd1,k + v1,k (3)
z2,k = C2,kxk +D2,kuk + v2,k. (4)

The transformation essentially decomposes the unknown
input dk and the measurement yk each into two orthogonal
components, i.e., d1,k ∈ RpHk and d2,k ∈ Rp−pHk ; as well
as z1,k ∈ RpHk and z2,k ∈ Rl−pHk , where pHk

= rank(Hk).
Then, given measurements up to time k − 1, the optimal
three-step recursive filter in the minimum-variance unbiased
sense can be summarized as follows:
Unknown Input Estimation:

d̂1,k= M1,k(z1,k − C1,kx̂k|k −D1,kuk)

d̂2,k−1= M2,k(z2,k − C2,kx̂k|k−1 −D2,kuk)

d̂k−1= V1,k−1d̂1,k−1 + V2,k−1d̂2,k−1

(5)

Time Update:

x̂k|k−1 = Ak−1x̂k−1|k−1 +Bk−1uk−1 +G1,k−1d̂1,k−1

x̂?k|k = x̂k|k−1 +G2,k−1d̂2,k−1
(6)

Measurement Update:

x̂k|k = x̂?k|k + LkΓk(z2,k − C2,kx̂
?
k|k −D2,kuk) (7)

where x̂k−1|k−1, d̂1,k−1, d̂2,k−1 and d̂k−1 denote the op-
timal estimates of xk−1, d1,k−1, d2,k−1 and dk−1; Γk ∈
RpR̃×l−pHk is a design matrix that is chosen to project the
“innovation” νk := z2,k − C2,kx̂

?
k|k −D2,kuk onto a vector

of pR̃ independent random variables, while Lk ∈ Rn×pR̃ ,
M1,k ∈ RpHk

×pHk and M2,k ∈ R(p−pHk
)×(l−pHk

) are
filter gain matrices that minimize the state and input error
covariances. For the sake of completeness, the optimal input
and state filter in [1] is reproduced in Algorithm 1.

2Due to space limitation, a technical characterization of the inference
algorithm will be presented in an upcoming companion paper [13].



Algorithm 1 Opt-Filter (qk, x̂0,qk
k−1|k−1, d̂0,qk

1,k−1, P x,0,qkk−1|k−1,
P d,0,qk1,k−1 ) [superscript qk omitted in the following]

. Estimation of d2,k−1 and dk−1

1: Âk−1 = Ak−1 −G1,k−1M1,k−1C1,k−1;
2: Q̂k−1 = G1,k−1M1,k−1R1,k−1M

>
1,k−1G

>
1,k−1 +Qk−1;

3: P̃k = Âk−1P
x,0
k−1|k−1Â

>
k−1 + Q̂k−1;

4: R̃2,k = C2,kP̃kC
>
2,k +R2,k;

5: P d2,k−1 = (G>2,k−1C
>
2,kR̃

−1
2,kC2,kG2,k−1)−1;

6: M2,k = P d2,k−1G
>
2,k−1C

>
2,kR̃

−1
2,k;

7: x̂k|k−1 = Ak−1x̂
0
k−1|k−1 +Bk−1uk−1 +G1,k−1d̂

0
1,k−1;

8: d̂2,k−1 = M2,k(z2,k − C2,kx̂k|k−1 −D2,kuk);
9: d̂k−1 = V1,k−1d̂

0
1,k−1 + V2,k−1d̂2,k−1;

10: P d12,k−1 = M1,k−1C1,k−1P
x,0
k−1|k−1A

>
k−1C

>
2,kM

>
2,k

−P d,01,k−1G
>
1,k−1C

>
2,kM

>
2,k;

11: P dk−1 = Vk−1

[
P d,01,k−1 P d12,k−1

P d>12,k−1 P d2,k−1

]
V >k−1;

. Time update
12: x̂?k|k = x̂k|k−1 +G2,k−1d̂2,k−1;
13: P ?xk|k = G2,k−1M2,kR2,kM

>
2,kG

>
2,k

+(I −G2,k−1M2,kC2,k)P̃k(I −G2,k−1M2,kC2,k)>;
14: R̃?2,k = C2,kP

?x
k|kC

>
2,k +R2,k − C2,kG2,k−1M2,kR2,k

−R2,kM
>
2,kG

>
2,k−1C

>
2,k;

. Measurement update
15: L̃k = (P ?xk|kC

>
2,k −G2,k−1M2,kR2,k)R̃?†2,k;

16: x̂k|k = x̂?k|k + L̃k(z2,k − C2,kx̂
?
k|k −D2,kuk);

17: P xk|k = (I − L̃kC2,k)G2,k−1M2,kR2,kL̃
>
k

+L̃kR2,kM
>
2,kG

>
2,k−1(I − L̃kC2,k)>

+(I − L̃kC2,k)P ?xk|k(I − L̃kC2,k)>+ L̃kR2,kL̃
>
k ;

. Estimation of d1,k
18: R̃1,k = C1,kP

x
k|kC

>
1,k +R1,k;

19: M1,k = Σ−1
k ;

20: P d1,k = M1,kR̃1,kM
>
1,k;

21: d̂1,k = M1,k(z1,k − C1,kx̂k|k −D1,kuk);

B. Properties of the Generalized Innovation Sequence
In Kalman filtering, the innovation reflects the difference

between the measured output at time k and the optimal
output forecast based on information available prior to time
k. The a posteriori (updated) state estimate is then a linear
combination of the a priori (predicted) estimate and the
weighted innovation. In the same spirit, we generalize this
notion of innovation to linear systems with unknown inputs
by defining a generalized innovation given by:

νk := Γk(z2,k − C2,kx̂
?
k|k −D2,kuk) := Γkνk (8)

= Γk(I − C2,kG2,k−1M2,k)(z2,k − C2,kx̂k|k−1 −D2,kuk)

which, similar to the conventional innovation, is weighted
by Lk and combined with the predicted state estimate x̂?k|k
to obtain the updated state estimate x̂k|k as seen in (7). This
definition differs from the conventional innovation in that the
generalized innovation uses a subset of the measured outputs,
i.e. z2,k. In addition, the matrix Γk is any matrix whose rows
are independent of each other and are in the range space
of E[νkν

>
k ] that removes dependent components of νk (a

consequence of [1, Lemma 17]), which further lowers the
dimension of the generalized innovation. An intuition for
this is that the information contained in the ‘unused’ subset
is already exhausted for estimating the unknown inputs.

Moreover, the optimal output forecast that is implied in (8)
is a function of x̂?k|k which contains information from the
measurement at time k. Nonetheless, it is clear from (8) that
when there are no unknown inputs, both C2,k and G2,k−1

are empty and Γk can be chosen to be the identity matrix,
in which case the definitions of generalized innovation and
(conventional) innovation coincide.

In the following theorem, we establish that the generalized
innovation, like the innovation, is a Gaussian white noise.

Theorem 1. The generalized innovation, νk given in (8) is a
Gaussian white noise with zero mean and a variance of Sk =
Γk(I − C2,kG2,k−1M2,k)R̃2,k(I − C2,kG2,k−1M2,k)>Γ>k .

Proof. Substituting (4) into (8), we have

νk = Γk(C2,kx̃
?
k|k + v2,k). (9)

Since E[˜̂x?k|k] = 0 and E[v2,k] = 0 for all k as is proven [1,
Lemma 13], it follows that the generalized innovation has
zero mean, i.e., E[νk] = 0, with covariance

E[νkν
>
j ] = E[Γk(C2,k

˜̂x?k|k + v2,k)(C2,j
˜̂x?j|j + v2,j)

>Γ>j ].

We first show that the above covariance is zero when k 6= j.
Without loss of generality, we assume that k > j. In this
case, from the properties of the filter, we have E[v2,kx̃

?>
j|j ] =

E[v2,kv
>
2,j ] = 0, thus the covariance reduces to

E[νkν
>
j ] = ΓkC2,k(E[˜̂x?k|k

˜̂x?>j|j ]C
>
2,k + E[˜̂x?k|kv

>
2,j ])Γ

>
j . (10)

Next, to evaluate E[˜̂x?k|k
˜̂x?>j|j ] and E[˜̂x?k|kv

>
2,j ], we first eval-

uate the a priori estimation error:
˜̂x?k+1|k+1 = xk+1 − x̂?k+1|k+1

= Ak(I − LkΓkC2,k)x̂?k|k + (I −G2,kM2,k+1C2,k+1)wk
−G2,kM2,k+1v2,k+1 +G2,kM2,k+1C2,k+1G1,kM1,kv1,k

−AkLkΓkv2,k := Φkx̃
?
k|k + v′k, (11)

where Φk and v′k are defined by the above while Ak :=
(I−G2,kM2,k+1C2,k+1)Âk and Âk := Ak−G1,kM1,kC1,k.
With the state transition matrix of the error system given by

Φk|j =

{
Φk−1Φk−1 . . .Φj = Φk|j+1Φj , k > j
I, k = j,

the state estimate error is given by

x̃?k|k = Φk|j x̃
?
j|j +

∑k−1
`=j Φk|`+1v

′
`. (12)

Thus, from (11), we obtain E[v′`x̃
?>
j|j ] = 0 and E[v′`v

>
2,j ] =

0 when ` > j (i.e., future noise is uncorrelated with
current estimate error and current noise) while when ` =
j, E[v′j x̃

?>
j|j ] = AjLjΓjR2,jM

>
2,jG

>
2,j−1 and E[v′jv

>
2,j ] =

AjLjΓjR2,j . With this and from (10), we can evaluate
E[x̃?k|kx̃

?>
j|j ], E[x̃?k|kv

>
2,j ] and E[νkν

>
j ] as follows:

E[x̃?k|kx̃
?>
j|j ] =Φk|j+1(ΦjP

?x
j|j +AjLjΓjR2,jM

>
2,jG

>
2,j−1)

E[x̃?k|kv
>
2,j ] =−Φk|j+1(ΦjG2,j−1M2,jR2,j+AjLjΓjR2,j)

⇒ E[νkν
>
j ] =ΓkC2,kΦk|j+1(AjLjΓjR2,jM

>
2,jG

>
2,j−1C

>
2,j

+ΦjP
?x
j|jC

>
2,j−ΦjG2,j−1M2,jR2,j −AjLjΓjR2,j)Γ

>
j

= ΓkC2,kΦk|j+1Aj(P
?x
j|jC

>
2,j −G2,j−1M2,jR2,j

−LjΓjR̃?2,j)Γ>j = 0, (13)

where R̃?2,j = C2,jP
?x
j|jC

>
2,j +R2,j −R2,jM

>
2,jG

>
2,j−1C

>
2,j −



C2,jG
>
2,j−1M2,jR2,j and for the final equality, we substi-

tuted the filter gain from [1, Section 5.4]:

Lj = (P ?xj|jC
>
2,j −G2,j−1M2,jR2,j)Γ

>
j (ΓjR̃

?
2,jΓ

>
j )−1.

Finally, for j = k, we can find Sk := E[νkν
>
k ] as

Sk = Γk(C2,kP
?x
k|kC

>
2,k − C2,kG2,k−1M2,kR2,k

−R2,kM
>
2,kG

>
2,k−1C

>
2,k +R2,k)Γ>k

= Γk(I−C2,kG2,k−1M2,k)R̃2,k(I−C2,kG2,k−1M2,k)>Γ>k
= ΓkR̃

?
2,kΓ>k .

Furthermore, from (12) and (9), since we assumed that
wk and vk for all k and x0 are Gaussian, the generalized
innovation νk is a linear combination of Gaussian random
variables and is thus itself Gaussian. Therefore, we have
shown that νk is a Gaussian white noise with zero mean
and covariance Sk. Moreover, Sk is positive definite since
Γk is chosen such that Sk is invertible [1, Section 5.4]. �

Remark 1. The whiteness property of the generalized inno-
vation provides an alternative approach to derive the filter
gain Lk in [1] as can be seen by setting (13) to zero.

C. Likelihood Function

Since the generalized innovation νk is a Gaussian white
noise with zero mean and covariance Sk (Theorem 1),
the conditional probability density function of νk given all
measurements prior to time k, Zk−1, is given by

fνk|Zk−1(νk|Zk−1) =
exp(−ν>k S

−1
k νk/2)

(2π)
p
R̃

/2|Sk|1/2

=
exp(−ν>k Γ>k (ΓkR̃

?
2,kΓ>k )−1Γkνk/2)

(2π)
p
R̃

/2|Sk|1/2

(14)

where pR̃ := rank(R̃?2,k), ν̃k := z2,k − C2,kx̂k|k−1 −
D2,kuk, ν = (I − C2,kG2,k−1M2,k)ν̃k, Γ̃k := Γk(I −
C2,kG2,k−1M2,k) and we have applied the identity
R̃?2,k := E[νkν

>
k ] = (I − C2,kG2,k−1M2,k)R̃?2,k(I −

C2,kG2,k−1M2,k)> which results from the idempotence of
(I − C2,kG2,k−1M2,k) [1, cf. Lemma 17]. Furthermore,
the idempotence of (I − C2,kG2,k−1M2,k) implies that,
similar to [1, Lemma 17], we can apply [14, Fact 3.12.9
and Proposition 2.6.3] to obtain pR̃ := rank(R̃?2,k) = l −
p ≤ l − pHk

with equality only when p = pHk
, i.e., Hk

has full rank. Next, we note that if Γk is chosen as a
matrix with orthonormal rows, Γ>k (ΓkR̃

?
2,kΓ>k )−1Γk is the

generalized inverse and |Sk| the pseudo-determinant of R̃?2,k
[15, pp. 527-528]. From the above reference, for the case
pR̃ = l − p < l − pHk

, we also see that (14) represents the
Gaussian distribution of νk ∈ Rl−pHk whose base measure
is restricted to the pR̃-dimensional affine subspace where the
Gaussian distribution is supported. When Hk has full rank,
the Gaussian distribution is fully supported in Rl−p and no
restriction is necessary.

Therefore, with the above base measure, we obtain the
conditional probability density function of z2,k conditioned
on the system mode, qk, and all prior measurements, Zk−1,
which we define as the likelihood function at time k:

L(qk|z2,k) := fz2,k|Zk−1,qk(z2,k|Zk−1, qk)

= fνk|Zk−1,qk(νk|Zk−1, qk) = N (νqkk ; 0, Sqkk ).
(15)

As proposed in [1, Section 5.3], we can choose Γk =[
0 IpR̃

]
Ũ>k R̂

− 1
2

k where Ũk matrix is obtained from the

singular value decomposition of R̂−
1
2

k CkG2,k−1. A second
choice bypasses the explicit expression of Γk with the use
of Moore-Penrose pseudoinverse (†) and pseudodeterminant
(|·|+), i.e., Γ>k (ΓkR̃

?
2,kΓ>k )−1Γk = R̃?†2,k and |Sk| = |R̃?2,k|+.

V. MULTIPLE MODEL APPROACH

From the perspective of a hybrid system, the multiple
model (MM) approach implements a bank of filters in
parallel, with each corresponding to a system mode. The
objective is then to decide which model/mode is the best
representation of the current system mode as well as to
estimate the state of the system based on this decision. In a
nutshell, a Bayesian framework is used to compute the mode
probabilities µk := P (qk|Zk) given all measurements up to
time k. Using Bayes’ rule, we can recursively find the mode
probability µjk := P (qk = j|Zk) at step k for each mode j,
given Zk = {z1,i, z2,i}ki=0 as

µjk = P (qk = j|z1,k, z2,k, Z
k−1) = P (qk = j|z2,k, Z

k−1)

=
f
z2,k|qk,Zk−1 (z2,k|qk=j,Zk−1)P (qk=j|Zk−1)∑N

`=1 fz2,k|qk,Zk−1 (z2,k|qk=`,Zk−1)P (qk=`|Zk−1)

=
N (νj

k;0,Sj
k)P (qk=j|Zk−1)∑N

`=1N (ν`
k;0,S`

k)P (qk=`|Zk−1)
, (16)

where we have substituted (15) for the final equality and
assumed that the probability of qk = j is independent of
the measurement z1,k. The rationale is that since we have
no knowledge about d1,k and the d1,k signal can be of any
type, the measurement z1,k provides no ‘useful’ information
about the likelihood of the system mode (cf. (3)).

This section presents two types of multiple model
estimators—static and dynamic. The static MM estimator
assumes that the system mode remains constant/static, with
a heuristic modification to keep the mode probabilities non-
zero, while the dynamic MM estimator captures the mode-
switching phenomenon by assuming that a Markov process
can describe the mode jump process. In both cases, we
assume that the prior mode probabilities are given

P (q0 = j|Z0) = µj0, ∀ 1, 2, . . . ,N, (17)

where Z0 is the prior information at time k = 0 and∑N
j=1 µ

j
0 = 1, while P (qk = j|Zk−1) in (16) differs for both

estimator variants. Both multiple model estimator variants
have a fixed number of models. For better performance,
modifications of the algorithms in this paper could be carried
out to allow for a variable structure (cf. [16] for a discussion
on model selection and implementation details).

A. MM Estimation: Static Variant

The static MM estimator (Algorithm 2) implements a bank
of N mode-conditioned simultaneous input and state filters
(described in Section IV-A) in parallel with the assumption
that the true system mode is fixed. As such, the state
estimates of other potentially mismatched models will not be
beneficial and thus, the bank of filters is run independently
from each other. However, in order to apply the static MM
estimator to the switched linear systems, some heuristic



Algorithm 2 Static-MM-Estimator ( )

1: Initialize for all j ∈ {1, 2, . . . ,N}: x̂j0|0; µj0;
d̂j1,0 = Σj−1

0 (zj1,0 − C
j
1,0x̂

j
0|0 −D

j
1,0u0);

P d,j1,0 = Σj−1
0 (Cj1,0P

x,j
0|0 C

j>
1,0 +Rj1,0)Σj−1

0 ;
2: for k = 1 to K do
3: for j = 1 to N do

. Mode-Matched Filtering
4: Run Opt-Filter(j,x̂jk−1|k−1, d̂j1,k−1, P x,jk−1|k−1, P

d,j
1,k−1);

f )
5: νjk := zj2,k − C

j
2,kx̂

j?
k|k −D

j
2,kuk;

6: L(j|zj2,k)= 1

(2π)
p
j

R̃
/2
|R̃j,?

2,k
|1/2+

exp

(
−
ν
j>
k
R̃

j,?†
2,k

ν
j
k

2

)
;

7: end for
8: for j = 1 to N do

. Mode Probability Update (small ε > 0)
9: µjk = max{L(j|zj2,k)µjk−1, ε};

10: end for
11: for j = 1 to N do

. Mode Probability Update (normalization)

12: µjk =
µ
j
k∑N

`=1
µ`
k

;

. Output
13: Compute (18);
14: end for
15: end for

modifications of the static MM estimator are necessary.
Firstly, to keep all modes ‘alive’ such that they can be
activated when appropriate, an artificial lower bound needs
to be imposed on the mode probabilities. Moreover, to deal
with unacceptable growth of estimate errors of mismatched
filters, reinitialization of the filters may be needed, oftentimes
with estimates from the most probable mode.

For each filter matched to mode j, the posterior mode
probabilities can be computed with (16) where P (qk =
j|Zk−1) = P (qk−1 = j|Zk−1) = µjk−1, since the model
is fixed. Then, these posterior mode probabilities are used to
determine the most probable mode at each time k and the
associated state and input estimates and covariances as:

j∗= arg maxµjk
x̂k|k= x̂j

∗

k|k, d̂k = d̂j
∗

k , P
x
k|k = P x,j

∗

k|k , P dk = P d,j
∗

k .
(18)

Remark 2. Alternatively, the output of the filter can be com-
puted via combination of the mode-conditioned estimates:

x̂k|k =
∑N
j=1 µ

j
kx̂

j
k|k, d̂k =

∑N
j=1 µ

j
kd̂
j
k,

P xk|k =
∑N
j=1 µ

j
k[(x̂jk|k − x̂k|k)(x̂jk|k − x̂k|k)> + P x,jk|k ]

P dk =
∑N
j=1 µ

j
k[(d̂jk − d̂k)(d̂jk − d̂k)> + P d,jk ]

However, in this case, the estimate d̂k was observed (in
simulation) to deviate significantly from the true value. This
is consistent with the fact that with a mismatched model, the
estimate of d̂jk can be arbitrarily large. Hence, this choice
of filter output for d̂k is not recommended.

B. MM Estimation: Dynamic Variant

In contrast with the static MM estimator, the dynamic
variant (Algorithm 3) assumes that the true mode switches
in a Markovian manner with known (and possibly state

dependent) transition probabilities

P (qk = j|qk−1 = i, xk−1) = pij(xk−1), ∀ i, j ∈ 1, . . . ,N.

In fact, the mode transition probabilities can serve as estima-
tor design parameters (cf. [4]). Therefore, the dynamic MM
estimator design is more flexible and have the ability to in-
tegrate prior information of the mode switching process into
the estimator. For conciseness and without loss of generality,
we shall assume that the state transition probabilities are
state independent, i.e., pij(xk−1) = pij . The incorporation
of the state dependency for stochastic guard conditions is
rather straightforward, albeit lengthy and interested readers
are referred to [17] for details and examples.

With the Markovian setting, the mode can change at each
time step. As a result, the number of hypotheses (mode
history) grows exponential with time. Therefore, an optimal
multiple model filter is computationally intractable. We thus
resort to suboptimal filters that manage the hypotheses in an
efficient way. The simplest technique is hypothesis pruning
in which a finite number of most likely hypotheses are kept,
whereas the hypothesis merging approach keeps only last few
of the mode histories, and combine hypotheses that differ in
earlier steps (cf. [4] for approaches designed for switched
linear systems without unknown inputs). In the following,
we propose a recursive algorithm similar to the interactive
multiple model (IMM) algorithm [4] which maintains N
number of estimates and N number of filters at each time k.

Each iteration/cycle of the algorithm consists of three
major components—initial condition mixing, mode-matched
filtering and mode probability update. In the initial condition
mixing step, for each input and state filter matched to mode
j at time k, we compute the probability that the system was
in mode i at time k − 1 conditioned on Zk−1:

µ
i|j
k := P (qk−1 = i|qk = j, Zk−1)

= P (qk=j|qk−1=i,Zk−1)P (qk−1=i|Zk−1)∑N
`=1 P (qk=j|qk−1=`,Zk−1)P (qk−1=`|Zk−1)

=
pijµ

i
k−1

P (qk=j|Zk−1)
=

pijµ
i
k−1∑N

`=1 p`jµ
`
k−1

.

(19)

Then, with this mixing probabilities µ
i|j
k for all i =

{1, . . . ,N}, we mix the initial conditions for the filter
matched to qk = j for all j = {1, . . . , N} according to

x̂0,j
k−1|k−1 =

∑N
i=1 µ

i|j
k x̂

i
k−1|k−1 (20)

d̂0,j
1,k−1 =

∑N
i=1 µ

i|j
k d̂

i
1,k−1 (21)

P x,0,jk−1|k−1=
∑N
i=1 µ

i|j
k [(x̂ik−1|k−1 − x̂

0,j
k−1|k−1)

(x̂ik−1|k−1 − x̂
0,j
k−1|k−1)> + P x,ik−1|k−1]

P d,0,j1,k−1=
∑N
i=1 µ

i|j
k [(d̂i1,k−1 − d̂0,j

1,k−1)

(d̂i1,k−1 − d̂0,j
1,k−1)> + P d,i1,k−1]

(22)

Note that there is no mixing of the d̂2,k and its corresponding
covariances because they are computed for a previous step
and are not initial conditions for the bank of filters.

Next, in the mode-matched filtering step, a bank of N si-
multaneous input and state filter (described in Section IV-A)
is run in parallel using the mixed initial conditions computed
in (20), (21) and (22). In addition, the likelihood function
L(qk = j|z2,k) corresponding to each filter matched to mode



Algorithm 3 Dynamic-MM-Estimator ( )

1: Initialize for all j ∈ {1, 2, . . . ,N}: x̂j0|0; µj0;
d̂j1,0 = Σj−1

0 (zj1,0 − C
j
1,0x̂

j
0|0 −D

j
1,0u0);

P d,j1,0 = Σj−1
0 (Cj1,0P

x,j
0|0 C

j>
1,0 +Rj1,0)Σj−1

0 ;
2: for k = 1 to K do
3: for j = 1 to N do

. Initial Condition Mixing
4: pjk =

∑N
`=1 p`jµ

`
k−1;

5: for i = 1 to N do
6: µ

i|j
k =

pijµ
i
k−1

p
j
k

;

7: end for
8: Compute (20), (21) and (22);

. Mode-Matched Filtering
9: Run Opt-Filter(j,x̂0,jk−1|k−1, d̂0,j1,k−1, P x,0,jk−1|k−1, P

d,0,j
1,k−1);

10: νjk := zj2,k − C
j
2,kx̂

j?
k|k −D

j
2,kuk;

11: L(j|zj2,k)= 1

(2π)
p
j

R̃
/2
|R̃j,?

2,k
|1/2+

exp

(
−
ν
j>
k
R̃

j,?†
2,k

ν
j
k

2

)
;

12: end for
13: for j = 1 to N do

. Mode Probability Update

14: µjk =
L(j|zj

2,k
)p

j
k∑N

`=1
L(j|z`

2,k
)p`

k

;

. Output
15: Compute (18);
16: end for
17: end for

j is obtained by (15). Finally, in the mode probability update
step, the posterior probability of mode j given measurements
up to time k, µjk := P (qk = j|Zk), can be found by
substituting P (qk = j|Zk−1) =

∑N
i=1 pijµ

i
k−1 from (19)

into (16). For output purposes only (not a major step in the
algorithm), the combined estimates and covariances can be
computed as given in (18) (cf. Remark 2).

VI. SIMULATION EXAMPLE

We return to the motivating example in Section II of
two vehicles crossing an intersection. Using the hidden
mode system model with state x =

[
xA, ẋA, xB , ẋB

]
, each

intention corresponds to a mode q ∈ {I , M, C} with the
following set of parameters and inputs:
• Inattentive Driver (q = I), with an unknown time-varying
d1 (uncorrelated with xB and ẋB , otherwise unrestricted):

AIc =


0 1 0 0
0 −0.1 0 0
0 0 0 1
0 0 0 −0.1

 , BIc =


0
0
0
1

 , GIc =


0 0
1 0
0 0
0 0

 ,

CIc =


1 0 0 0
0 1 0 −1
0 0 1 0
0 0 0 1

 , DI
c =


0
0
0
0

 , HI
c =


0 0
0 0
0 0.1
0 1

 .
• Malicious Driver (q = M), i.e., with d1 = Kp(xB−xA)+
Kd(ẋB − ẋA) where Kp = 2 and Kd = 4:

AMc =


0 1 0 0
−Kp −0.1−Kd Kp Kd

0 0 0 1
0 0 0 −0.1

 , HI
c =


0 0
0 0
0 0
0 −1


BMc = BIc , G

M
c = GIc , C

M
c = CIc , D

M
c = DI

c .

• Cautious Driver (q = C), i.e., with d1 = −KpxA −KdẋA

where Kp = 2 and Kd = 4:

AMc =


0 1 0 0
−Kp −0.1−Kd 0 0

0 0 0 1
0 0 0 −0.1

 , HI
c =


0 0
0 −1
0 0
0 1


BMc = BIc , G

M
c = GIc , C

M
c = CIc , D

M
c = DI

c .

Furthermore, the velocity measurement of the vehicle is
corrupted by an unknown time-varying bias d2. Thus, the
switched linear system is described by

ẋ = Aqcx+Bqcu+Gqcd+wq, y = Cqcx+Dq
cu+Hq

c d+vq,

where d =
[
d1 d2

]>
, the intensities of the zero mean, white

Gaussian noises, w =
[
0 w1 0 w2

]>
and v, are:

Qc = 10−4


0 0 0 0
0 1.6 0 0
0 0 0 0
0 0 0 0.9

 ;Rc = 10−4


1 0 0 0
0 0.16 0 0
0 0 0.9 0
0 0 0 2.5

 .
Since the proposed filter is for discrete-time systems, we
employ a common conversion algorithm to convert the
continuous dynamics to a discrete equivalent model with
sample time 4t = 0.01s, assuming zero-order hold for the
known and unknown inputs, u and d.

From Figure 1, we observe that both the static and dy-
namic MM estimators were successful at inferring the hidden
modes of the system in the cases when the vehicle remains
in the ’Inattentive’ mode, or switches modes according to
I→M→I or I→C→I. The performance of the static MM
estimator is slightly worse than the dynamic variant, as can
be seen in Figure 1(c). On the other hand, the changes in
the mode probability estimate of the dynamic MM estimator
are quicker which could be interpreted as having a higher
‘sensitivity’ to mode changes.

Taking a closer look at the ‘I→M→I’ scenario (the others
are omitted due to space limitations) depicted in Figures
2a and 2b, we observe that both variants of the MM esti-
mators performed satisfactorily in the estimation of states
and unknown inputs. Similar to the observation of the mode
probabilities, we note that the estimates of the static MM es-
timator (Figure 2a) are slightly inferior to that of the dynamic
variant (Figure 2b). As aforementioned, this is because the
dynamic MM estimator allows for mode transitions through
a Markovian jump process where the transition matrix can be
used as a design tool or incorporate prior knowledge about
the mode switching process. In this example, the transition

matrix is chosen as PT =

 0.7 0.15 0.15
0.399 0.6 0.001
0.399 0.001 0.6

.

VII. CONCLUSION

This paper presented multiple model estimation algorithms
for simultaneously estimating the mode, input and state
of hidden mode switched linear stochastic systems with
unknown inputs. We defined the notion of a generalized
innovation sequence, which we then show to be a Gaussian
white noise. Next, we exploited the whiteness property of
the generalized innovations to form a likelihood function
for determining mode probabilities. Simulation results for
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Fig. 1: Mode probabilities for each mode with static (top) and dynamic (bottom) MM estimators.
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(a) With the static MM estimator.
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(b) With the dynamic MM estimator.
Fig. 2: Measured (superscript ‘m’, unfiltered), actual and
estimated states and unknown inputs for the ’I→M→I’ case.

vehicles at an intersection with switching driver intentions
demonstrated the effectiveness of the proposed algorithms.
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