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Asymptotically reachable states and related symmetry in systems theory

Brian Paden®,

Abstract—In executing state-to-state maneuvers, end states
which are stabilizable states provide for robust maneuver
control. In the normal circumstance that a maneuver only takes
the system to a neighborhood of a stabilizable state, feedback
control can be used to regulate to a neighborhood of the desired
end state. In contrast, if the end state is not a stabilizable
state, large try-again maneuvers which cannot be bounded by
the terminal tracking error of the prior maneuver are often
required in the event of a near miss. In this paper it is shown
that the subspace of stabilizable states for a linear stabilizable
system is the intersection of the reachable subspace and a
particular controlled invariant subspace we call the constant
state subspace. The stabilizable states are also the states which
can be approached asymptotically with appropriate choice of
control, and we use this characterization as our definition of
stabilizable states.

I. INTRODUCTION

The widespread use of computational tools for control
system design has motivated the development of numerous
optimal controller synthesis techniques over the past 30
years. Computationally aided synthesis has its roots in the
1960s with LQR and LQG controllers requiring numerical
solutions to the differential or algebraic Ricatti equation
[1]. LQR and LQG along with many variations can now
be placed into the more broadly applicable category of Ho
design which became popular during the 1980s and 1990s
along with H, design and other convex optimization based
approaches [2], [3]. Today, the ease with which one can
obtain an optimal controller for a particular system and
performance index makes it easy to overlook important
performance limitations of a system.

In order to have a good understanding of the capabilities
and limitations of a control system, it is essential to first ex-
amine the system for certain properties that capture important
system behavior and performance limitations [2], [4], [5].
Along these lines, there is a large body of literature devoted
to examining the structure of LTI systems and the related
implications for control rather than focusing on the control
design itself. The most widely known properties are those of
controllability, reachability and their duals [6]. Another well
studied property is the zero dynamics of a system [7], and
yet another is the severe performance limitations imposed on
nonmimimum phase systems [8]. Left or right invertibility is
another example of an important system property used in
estimation and for establishing functional controllability [9].

The more modern approaches taken for controller synthe-
sis usually focus on examining operator gains which is a
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good way to pose the control design as an optimization,
while geometric properties of subspaces tend to be more
useful for identifying performance limitations and feasibility
of control tasks. This paper presents what appears to be a
simple yet new geometric property which, in general terms,
characterizes the subspace of states which can be stabilized.
This subspace was identified while trying to articulate why it
is more difficult to reach certain states than others with high
precision despite having a fully reachable system. The reason
is that some reachable states can be regulated in the same
way as the origin in a stabilizable system where a small
tracking error can be driven to zero monotonically while
others states, despite being reachable, require the tracking
error to initially increase substantially before reaching a
smaller tracking error at a later time. Additionally, in these
cases where the target is not stabilizable the trajectory is
forced to deviate from the desired state immediately after
reaching it. The result is that the unstabilizable states require
careful timing and overly robust tracking control of the ref-
erence trajectory for satisfactory performance. One example
of this difficulty can be seen in the sophisticated trajectory
generation techniques and careful modeling used to make
state-to-state connections for acrobatic quadrotor maneuvers
in [10], [11] as well as in the example in section II.

Another reason it is important to identify the subspace
of asymptotically reachable states is simply for setpoint
regulation. If the setpoint is chosen such that the preimage
of the output map requires the state to lie outside of this
subspace for perfect tracking, then controller performance
will necessarily be poor. Another potential application of
the proposed work is in the area of learning control. The
subspace of asymptotically reachable states has an associ-
ated symmetry which may prove useful in learning control
applications where the desired motion takes place near state
constraints. The symmetry enables rehearsal of a desired mo-
tion elsewhere in the state space where tracking requirements
are less critical.

The contributions of the paper are structured as follows.
Section II provides a description of the motivating control
problem. It helps to illustrate the distinction between the
reachable subspace and the asymptotically reachable sub-
space. Section III introduces the class of systems under con-
sideration and defines the asymptotically reachable subspace.
Section IV reviews relevant background and geometric tools
for analyzing LTI systems. Section V contains the primary
contributions of the paper including, geometric properties of
the asymptotically reachable subspace, the equivalence to the
subspace of stabilizable states, a useful related symmetry,
and relation to well known subspaces of LTI systems. Lastly,
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Section VI contains concluding remarks.

II. MOTIVATING EXAMPLES

Evaluating the controllability and equivalently reachability
of an LTI system is useful for determining if the origin can
be stabilized, but states in the reachable subspace which can
be reached in finite time are not necessarily stabilizable.
Although it is a simple notion, it is important to classify
the subspace of states which can be reached asymptotically
as it characterizes a subspace in which point-to-point tra-
jectories can be executed robustly. The importance of this
distinction is introduced with the following examples. The
first example provides intuition while the second example
is what motivated the present discussion of the stabilizable
subspace.

Double integrator

A double integrator is the most simple example that can
demonstrate that it may require arbitrarily large motions in
the state space to make small point-to-point connections
between states. Consider the system

()= (@) () () o

Suppose (z(0),v(0))T = (¢,1)T, with ¢ > 0, and the
desired terminal state is (z(T),v(T))T = (0,1)7. Let
e(t) = H(x(T),v(T))T — (@(t),v(t))T||. Thus e(0) = e.
Since x(T) < x(0), to drive the state to (0,1)7 requires
that at some time t* € (0,7), £(t*) < 0 = v(t*) < 0.
Thus, e(t*) > 1. Therefore the trajectory connecting these
states requires arbitrarily large motion in the sense that
e(t*)/e(0) > 1/e is an arbitrarily large value. The large
motion just described is illustrated in figure 1.

e(0)

N

e(t*) > e(0)

Wi

Fig. 1. State space trajectory (blue) of the system defined in (1) with a
control driving the system from the initial state (red) to the desired final
state (green). Notice that the point-to-point motion is small but a large state
trajectory is required to connect the two states.

On the other hand suppose (x(0),v(0))T is arbitrary and
the target is (z(7),v(T))T = (1,0)7. Now consider the
following feedback control

()-(0) (D) (D) (Gin=0)

u

The suggested control yields a trajectory which ap-
proaches the target exponentially fast satisfying e(t) <
e(0)exp(—t/2). This suggests that the latter target is better
behaved in some sense. The difference between these states
in this example is clear. The first target cannot be stabilized
while the second can.

VIOL sloped landing

Consider the problem of controlling a helicopter to a
sloped landing site from hover. For brevity, consider a
simplified model. Assume that the yaw is fixed so only
pitch and roll dynamics need to be considered. Further,
assume that an attitude reference tracking control stabilizes
the desired attitude. Then the input to the system is the
attitude and vertical velocity reference, (ug,ug,u,), and
the state is the position, velocity, attitude, and attitude rate,
(@, Y, 2,05, 0y, Uz, §,0, V4, v9). A linearization of a low order
model about hover yields the following (A, B) pair:

000 1 0 0 O 0 0 0
000 0 1 0 O 0 0 0
000 0 0O 1 O 0 0 0
000-b, 0 0O —g O 0 0
e 000 0 —=b, O O g 0 0
000 0 O —p O 0 0 0 ’
000 0 0O O O 0 1 0
000 0 0O O O 0 0 1
000 0 0 0 —w?2 0 —2Cwy 0
000 0 0O O O —w; 0 —2Cwy
0 00
0 0O
0 0O
0 0O
0 00
B= 0 0 u 2)
0 0O
0 00
inO
0 wi O

The closed loop attitude dynamics are represented by a
second order response with natural frequencies wg g and
damping ratio (4. The lateral velocity then integrates
the attitudes scaled by acceleration due to gravity, g with
dissipation b, ,. The lateral position is then obtained by
integrating lateral velocity. The objective is to take the
helicopter from an initial state (zq, Yo, 20,0,0,0,0,0,0,0)
to a sloped landing site (0,0,0,0,0,0,¢,6,0,0).

It is now useful to compute the asymptotically reachable
subspace for this system. This subspace will be discussed in
detail in section V. Evaluating

S = (Ker(A) + A" (Im(A) n Im(B))) NC,

where C is the controllable subspace, shows that asymptoti-
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cally reachable states are contained in
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Thus, any position with zero velocity, attitude, and attitude
rate can be stabilized. The target landing state is clearly not
within this subspace and therefore can only be reached in a
finite time. Further, if the state is not reached with sufficient
accuracy, an additional large motion may be required to
reduce the error. With uncertainty in the model it becomes
significantly more difficult to guarantee that the system will
reach the target state with acceptable precision. On the other
hand, if the target state were asymptotically reachable, small
errors could be rejected by stabilization of the target after
executing the point-to-point maneuver.

A low order model similar to the one described in (2) was
used to design control laws for a Sikorsky UH60 helicopter.
The model was identified from a high fidelity simulation of
the helicopter made available by Aurora Flight Sciences. A
LQR was used to stabilize states within the asymptotically
reachable subspace. To reach the target state outside of the
asymptotically reachable subspace, a trajectory and feed-
forward control were generated using flatness based plan-
ning. LQR was again used, now to stabilize the trajectory.
The initial state, which is contained in the asymptotically
reachable subspace, was stabilized by the proposed control
followed by execution of the planned trajectory.

Modeling errors between the reduced order linear model
used for control design and the simulation led to trajectory
tracking errors during execution of the maneuver. An unstabi-
lizable terminal state made rejecting terminal tracking errors
nontrivial and necessitated large try again maneuvers to-
gether with an iterative learning control law. Figure 2 shows
the terminal output tracking error of the UH60 simulation
visualized in Open Scene Graph after an initial attempt at a
landing maneuver.

As this example illustrates, the goal state which is reach-
able from the origin cannot be stabilized and regulated by
feedback control. The remainder of this paper focuses on
identifying the subspace of an LTI system in which states
can be stabilized.

III. SYSTEM DESCRIPTION
The system under consideration is a continuous LTT sys-

tem with input to state dynamics:

it =Ax+ Bu, xzeR" wueR™. 3)

Without loss of generality it is assumed B has full column
rank.

Fig. 2. An Open Scene Graph visualization of the UH60 helicopter
tracking error at the planned touchdown time. The white cube represents the
target position. The target attitude is illustrated by the slope of the landing
site. The tracking error in position alone at the desired touchdown time is
approximately two meters.

The goal of this paper is to identify the subspace of states
reachable in infinite time and relate them to states stabilizable
by feedback control. While it is not difficult to identify
the asymptotically reachable subspace in some examples, it
is useful to characterize it and its properties in a general
systems setting.

Definition 1: The asymptotically reachable subspace,
S C R", is the subset of states such that for each xy € R™
and x, € S, there exists a control signal u(t) such that a
solution to (3), x(t) , passing through x satisfies

tll)rgo x(t) = zp.

It is subsequently shown that the asymptotically reachable
subspace is equal to the subspace of states which can be
stabilized by feedback control and that it is not equal to the
reachable subspace in general.

IV. RELEVANT BACKGROUND ON LTI SYSTEMS

The notion of invariant subspaces is fundamental to linear
systems theory, and relevant to the present work are A-
invariant subspaces, V, containing the forcing subspace,
Im(B) . That is,

AV CV, Im(B)CV. 4)

The subspace of lowest dimension with this property is the
well known reachable subspace, denoted C for the remainder
of the paper.

Another equally useful notion is that of a controlled
invariant. A subspace X is an (A, B)-controlled invariant
if

AX C X 4+ Im(B).

This paper will make use of a particular controlled invariant
subspace, X, referred to as the constant state subspace. This
subspace consists of the states that can be held constant for
a finite time interval. That is, states x for which there is an
input u satisfying the equilibrium equation:

0 = Az + Bu. 5)
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It follows from the definition that X is a controlled invariant.
Notice that for each x € X, there exists a u such that
Az = Bu. Thus AX. C Im(B) C X. + Im(B). The
solutions to this equation form a subspace very closely
related to the constant output subspace discussed in [12].
The constant state subspace is given in terms of the A and
B matrices below:

X, = AT(Im(A) N Im(B)) + Ker(A). (6)

At is the pseudo-inverse of A. The first term in (6) captures
the subspace where control effort can cancel the system
dynamics, while the second term characterizes the sub-
space where there are effectively no dynamics. The GA
toolbox for MATLAB is a useful computational tool for
carrying out subspace manipulation [13]. The following
MATLAB command produces an orthornormal basis for X:
sums (pinv (A) xints (A,B) ,ker (A)) .

One might accidentally mistake the reachable subspace,
C, for X, or that perhaps X, is a subset of C since the
equilibrium condition (5) makes it seem that the constant
state subspace is related to the reachable subspace. However,
they are unrelated in general.

Remark 1: [In general the constant state subspace nei-
ther contains nor is contained in the reachable subspace:

(Example with C C X.) Let Rank(A) = 0 and let
Rank(B) = m < n. Since Ker(A) = R", the constant-
state subspace will be all of R™. However, since Rank(B) =
m and A is necessarily 0,xn, the controllability matrix,
[BAB A?B ... A»~1 B] will have rank m. Thus, C C R" =
X..

(Example with X, C () Choose A to be full rank
and (A, B) controllable so that the controllable/reachable
subspace is all of R™. Since A and B are each full rank,
Ker(A) =0, and dim(AT(Im(A)NIm(B)) = Rank(B) =
m. If m < n then the constant-state subspace must be a
proper subset of R", X, C R™ =C.

V. MAIN RESULTS

Next symmetries of the LTI system are discussed and in
particular how they are related to the constant state subspace.
If x(t) satisfies (3) with the control u,;, passing through
att = 0, then for any v € Ker(A), z(t)+v is also a solution
to (3). This is demonstrated in the following equation:

x(t)+v=(xo+v)+ /Ot A(z(1) +v) + Bug dr

t
= (360 +/ Az(7) + Bug dT) + 0.
0

This follows immediately from the fact that v is in the null
space of A. One application of this symmetry is that in a sta-
bilizable system a feedback control law which stabilizes the
origin can be used to stabilize any v € Ker(A) by a simple
change of coordinates. System symmetries have additional
applications ranging from motion planning [14] to optimal
control [15]. Motivated by the possible applications, it is
of interest to use control to artificially introduce additional

symmetries to the system. This symmetry can be extended
to the constant state subspace through the appropriate use of
control.

Proposition 1: If x(¢) is a solution to (3) with control
Uy » then for all v € X, z(t) + v is a solution with control
Uy — BT Av

Proof: Putting the candidate solution into the integral
equation yields

z(t)+v = (zg+v)+ tA(x(T)—H})—!—B (uor — BT Av) dr

¢
= (zo+v) —|—/ Az(T) + Av+ Buy — BB Avdr
0

Since v € X, the control input — BT Av premultiplied by B
cancels the term Av. Thus,

¢
z(t) +v= (aco —|—/ Az(T) + Bug dT) +v.
0

|
An application of this symmetry is that a motion that is
executed in one region of the state space can also be executed
in a new location shifted by v. This may be particularly
useful in learning control applications where a motion is
rehearsed in an obstacle free region and then executed in a
region where performance is critical. Although the symmetry
exists for the entire constant state subspace, it is more
useful to only consider the intersection of the constant state
subspace with the reachable subspace, X, N C, as some of
these states may not be stabilizable.

Proposition 2: Suppose (A, B) is stabilizable. Then a
control law exists which stabilizes a fixed state x, if and
only if x,. € X.NC.

Proof: (<) Suppose x, € X.NC. Then there exists
a feedback gain K such that (A + BK) is Hurwitz. Let
u = K(z — z,) + u,, and define the change of coordinate
T = x—x,. Simplifying state equation in (3) with the change
of coordinates yields

i = (A+ BK)i + Az, + Bu,.

Since x,. € X, there exists a u, such that 0 = Az, + Bu,.
Choosing such a u, leads to an exponentially stable origin
in the new coordinates. Hence, x,. is exponentially stable in
the original coordinates.

(=, by contraposition) Suppose now that z, € (X.NC)
Equivalently, z, € (X.)°U (C)¢. If z, € (X.)° and at
some time x(t) = z,, then @(t) = Axz(t) + Bu(t) # 0
regardless of the choice of control at time ¢. It is not
possible for z, to be an equilibrium and thus is certainly
not a stable equilibrium. On the other hand if z, € (C)°,
then z, admits a decomposition z, = 2¢ + 2C where
2€ € C and 2 € C*. Since the system is stabilizable, the
uncontrollable modes are stable. Hence, any state trajectory
x(t) with similar decomposition into C, and C* will have
2€ (t) = 0 asymptotically. Thus,

c

. Y C C ct
t]irgox(t) - t]irgox (t) 7& xr +xr )
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since fo # 0. Thus, 2, ¢ X,.NC implies that x,. cannot be
stabilized which, by contraposition, completes the proof. B

Related result from geometric control

A related result from the geometric control literature which
could be used to come to a conclusion similar to proposition
2 is the output stabilization problem [16]. One can check
that states in X, N C are stabilizable by appropriately refor-
mulating the problem as an output stabilization problem and
determining the solvability of the problem. This provides a
way to verify that a candidate subspace contains states that
are indeed stabilizable. However, this approach is limited in
that it only verifies that X. N C contains stabilizable states.
It does not establish if it contains all stabilizable states.

The following equation outlines how the appropriate
output stabilization problem can be formulated. Define an
augmented system with matrices (A, B, D) as

()-(0)(2)+(2)-

A

s () (-G o

D

oo}

The added states r double the dimension of the state space.
Let the matrix S be an orthonormal basis for X, N C. The
output regulation problem is to determine if there exists a
feedback gain F' such that

lim De(A+BM ( o > =0,

t—o0 Tref
which is equivalent to saying the output of the closed loop
system will tend to zero. When such a feedback gain exists
the problem is said to be solvable. Notice that the augmented
system has r = x,.y for all time and if z = SSTr, then
z = 0. Further, if r € X.NC and z = 0, then x = r which
is the desired result.

To state the necessary and sufficient condition for solv-
ability of the output stabilization problem, as presented in
[17], some additional notation is needed. Let «(s) be the
minimal polynomial of the augmented A matrix in (7). The
minimal polynomial can be factored into polynomials with
roots in the open left half complex plane and closed right
half complex plane, a(s) = a™(s)a~(s). Now define the
subspace Xt (A) = Ker(at(A)) which is the unstable
subspace of A. Next, let V* be the largest (A, B)-controlled
invariant subspace contained in K er(f)). Then the output
stabilization problem is solvable if and only if

XT(A) cv +C.

C is the controllable subspace of the augmented system.
This condition states in geometric terms that the problem
is solvable if and only if the unstable modes of A are either
controllable or can be hidden in the nullspace of D.
Corollary 1: For a system with (A, B) stabilizable, S =
X.NC. The asymptotically reachable subspace is equal to the

Fig. 3. Two RC filters are connected to a controlled voltage source u.
The states of the system are the voltages across each of the capacitors.

intersection of the constant state subspace with the reachable
subspace.

Proof: ((X.NC) C &) That X, N C is a subset
of the asymptotically reachable subspace is established by
constructing the feedback control stabilizing any state in the
subspace X, NC. Asymptotic stability of a state is sufficient
for it to be asymptotically reachable.

(S C (X.NC)) The reverse inclusion is contained in the
reverse direction proof of proposition 2. Recall that for
x,. € (X.NC)", trajectories cannot reach x, asymptotically
regardless of the control. Thus, x, € (X.NC)“ implies that
xr € S¢ Hence, the asymptotically reachable subspace is
contained in X.NC. [ |

Example: RC filter network

This simple example illustrates the distinction between the
reachable and asymptotically reachable subspaces as well as
provides some intuition. Two RC' filters are connected in
parallel to a control input voltage as sketched in figure 3. The
states x; and zo are the voltages across the two capacitors.
The system dynamics can be obtained using basic circuit
analysis and are shown in (8).

. —1 1
(?1) _ <R101 0 ) (“””1) 4 (Racl >u ®)
T2 0 mos T2 R2Cs

Observe that for R;Cy = R2C', the reachable and asymp-
totically reachable subspaces coincide on Span{(1 1 )T}
In this case the system is not controllable. Controllability
is obtained by selecting R;C; # R2C5. This alteration
changes the system from stabilizable to controllable and
thus arbitrary voltages can be achieved across either of the
capacitors in finite time. However, the asymptotically reach-
able subspace remains unchanged so that the stabilizable
combination of voltajges across the capacitors must still lie
within Span{(11)"}.

VI. CONCLUSIONS

The asymptotically reachable subspace and related prop-
erties were identified for the (A, B) pair of a classical LTI
system. A stronger condition than the usual reachability,
asymptotic reachability identifies the locus of stabilizable
reference states as well as being a subspace with useful
symmetry.
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