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Abstract— In this paper, we present an optimal filter for
linear time-invariant continuous-time stochastic systems that
simultaneously estimates the states and unknown inputs in
an unbiased minimum-variance sense. The optimality of the
proposed filter is proven by reduction to an equivalent system
without unknown inputs. Then, a second proof is given for
a special case by limiting case approximations of the optimal
discrete-time filter [1], thus establishing the connection between
the continuous- and discrete-time filters. Conditions for the
existence of a steady-state solution for the proposed filter are
also given. Moreover, we show that a principle of separation of
estimation and control holds for linear systems with unknown
inputs. An example is given to demonstrate these claims.

I. INTRODUCTION

For linear continuous-time stochastic systems with known
inputs, the Kalman-Bucy filter [2] is regarded as the optimal
solution to extract information about a variable of interest
from noisy measurements. However, the accessibility of
the unknown/disturbance input is often not possible. This
problem of simultaneous state and input estimation is found
across many disciplines and applications, from the real-time
estimation of mean areal precipitation during a storm [3] to
input estimation in physiological and transportation systems
[1], [4] to fault detection and diagnosis [5].

Literature review. Initial research with the objective of
concurrently obtaining minimum-variance unbiased esti-
mates for both the states and the unknown disturbance
inputs to the system has been focused on particular classes
of linear discrete-time systems with unknown inputs [6]–
[10]. Recently, a less restrictive framework for optimally
estimating both state and unknown input has been proposed
in [1]. However, most state and input/fault estimation solu-
tions for continuous-time systems are limited to deterministic
systems (see, e.g., [11]–[14] and references therein), and they
typically assume bounds on the allowed disturbance input or
rely on the differentiation of measurements, which may lead
to instability when noise is present. Hence, the problem of
simultaneous state and input estimation for linear continuous-
time stochastic systems remains open.

Contributions. To bridge the gap in knowledge about
optimal filters for simultaneous input and state estimation of
linear time-invariant continuous-time stochastic systems, we
propose an optimal filter, that estimates the unknown input
and the system states in the minimum-variance unbiased
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(MVU) sense, i.e., the estimated signals have zero bias and
have variances that are not higher than any other unbiased
estimates for all possible values of the signals.

To prove the optimality of the proposed filter, we reduce
the linear system with unknown input to an equivalent
system without unknown inputs. Thus, we can use existing
results of the Kalman-Bucy filter [2] to obtain the proposed
optimal filter and also the conditions for the existence of
a steady-state solution of the resulting Riccati differential
equation. Next, we derive the optimal filter for a special
case by using limiting case approximations of the discrete-
time optimal filter in [1]. Through this derivation, we gain
a better understanding of the similarities and differences
of the discrete-time and continuous-time filters. Moreover,
we present a second complementary algorithm under the
condition that an additional measurement with information
about the state derivative is not available and that only
the estimation of state is desired. Finally, we show that a
principle of separation of estimation and control also exists
for linear systems with unknown inputs.

Notation. Rn denotes the n-dimensional Euclidean space,
and N positive integers. For a vector of random signals, v ∈
Rn, its expectation is denoted by E[v]. Given a matrix M ∈
Rp×q , its transpose, inverse and rank are given by M>, M−1

and rk(M). For a symmetric matrix S, S � 0 and S � 0
denote S is positive definite and positive semidefinite.

II. PROBLEM STATEMENT

For ease of exposition, we consider the following
model representation for linear time-invariant continuous-
time stochastic system1

ẋ(t) = Ax(t) +Bu(t) +Gd(t) + w(t),
y(t) = Cx(t) +Du(t) +Hd(t) + v(t),

(1)

where x(t) ∈ Rn and y(t) ∈ Rl are the state and mea-
surement vectors at time t. The known and unknown input
vectors, u(t) ∈ Rm and d(t) ∈ Rp, respectively, are assumed
to be deterministic and once differentiable (i.e., u̇(t) and
ḋ(t) exist). The process noise w(t) ∈ Rn and the mea-

1This model representation is sometimes referred to as a nonsuccessful
construction [15, Section 3.4]. However, we intentionally choose this more
common representation found in the original Kalman-Bucy filter [2] and
textbooks (e.g., [16]–[18]) over the more accurate stochastic differential
equations [15, Section 7.6]. Since the proofs in this paper, among others,
use existing results from the Kalman-Bucy filter which are derived from
the duality of the optimal control and estimation problems [2], [15] that is
directly applicable to the stochastic differential equation representation, this
choice of representation does not affect the results of this paper beyond the
slight abuse in model representation.

2015 American Control Conference
Palmer House Hilton
July 1-3, 2015. Chicago, IL, USA

978-1-4799-8686-6/$31.00 ©2015 AACC 2511



surement noise2 v(t) ∈ Rl are assumed to be mutually un-
correlated, zero-mean, white random processes with known
covariance matrices, with noise statistics E[w(t1)w(t2)>] =
Q(t1)δ(t1 − t2), E[v(t1)v(t2)>] = R(t1)δ(t1 − t2) and
E[w(t1)v(t2)>] = 0, where δ(·) is the Dirac delta function,
Q(t) = Q � 0 and R(t) = R � 0 for all t (see, e.g., [2], [18]
for details about the choice of noise model). The matrices
A, B, G, C, D, H , Q and R are known and constant.
x(t0) = x0 is also assumed to be independent of v(t) and
w(t) for all t and an estimate x̂(t0) := x̂0 of the initial state
x0 is available with covariance matrix Px

0 . Without loss of
generality, we assume throughout the paper that n ≥ l ≥ 1,
l ≥ p ≥ 0 and m ≥ 0 and the current time t ≥ 0.

As observed in [19] for deterministic systems with un-
known inputs, except for some trivial cases (e.g., H has
full rank), derivatives of the measurements are unavoidable
when the reconstruction of the unknown input is desired.
Thus, we expect stochastic systems to similarly require some
form of additional signal information/measurement that is
a counterpart of the derivative of y(t) in the deterministic
case. The necessity for such a measurement related to the
derivative will become obvious after a similarity transfor-
mation shown in Section III-A, in which we note that the
measurement y(t) does not contain any information about
a particular component of the unknown input d(t), if H
is rank deficient. However, since numerical differentiation
of noisy measurements is in general to be avoided and a
higher-order system representation via state augmentation
with inputs would not result in a corresponding full rank
H ′ if the original H does not have full rank, we instead
assume that we have additional measurements that contain
information about ẋ(t) given by

y(t) = Cẋ(t) +Du̇(t) +Hḋ(t) + v(t), (2)

with the following noise statistics: E[v(t)] = 0,
E[v(t1)v(t2)>] = R(t1)δ(t1 − t2), E[v(t1)v(t2)>] = 0 and
E[w(t1)v(t2)>] = 0, and R � 0 is constant and known.
This assumption of an additional measurement is reasonable
in practice, for e.g., accelerations of mechanical systems are
typically measured in addition to state (position and velocity)
measurements. Note that the measurement y is not needed
if H is full rank. Finally, to simplify notations, we omit the
explicit time-dependence of the signals throughout the paper.

The objective of this paper is to design an optimal re-
cursive filter algorithm (Section III) which simultaneously
estimates the system state x(t) and the unknown input d(t)
based on an initial estimate x̂0 and the measurements up to
time t, y(τ) and, in the case that H is not full rank, with
additional measurements y(τ) for all 0 ≤ τ ≤ t. No prior
knowledge of the dynamics of d(t) is assumed. In addition,
the special case3 where C = C, D = D and H = H will be

2Note that in Section IV-A, we will consider a heuristic approach for a
special case in which we assume that v(t) = 0 for all t ≥ 0.

3The additional measurement y(t) for this special case can be seen
as a pseudo-derivative of the output measurement y(t), which should be
distinguished from the output derivative signal ẏ(t) that is not well defined
due to the differentiation of the discontinuous noise term.

studied in relation to the discrete-time filter for developing an
intuition about the similarities and subtle differences between
continuous- and discrete-time filters.

A secondary goal of this paper is to present a comple-
mentary algorithm for the same special case when H is
rank deficient and with the additional restriction that the
measurement y and the signal u̇(t) are not available. In this
case, only a particular component of the unknown input can
be estimated. However, this case is of interest for applications
that only require the estimation of state for systems with
unknown inputs, as is done in earlier literature on linear
discrete-time systems [3], [20], [21]. Moreover, for reasons
that will be expounded in Section IV, this algorithm is only
presented for the case that v(t) = 0 for all t ≥ 0.

III. MINIMUM-VARIANCE UNBIASED FILTER FOR INPUT
AND STATE ESTIMATION

A. Similarity Transformation

Similar to its discrete-time counterpart [1], we first carry
out a similarity transformation of the system. Let rk(H) =
pH . Then, we rewrite the direct feedthrough matrix H using
singular value decomposition as

H =
[
U1 U2

] [Σ 0
0 0

] [
V >1
V >2

]
, (3)

where Σ ∈ RpH×pH is a diagonal matrix of full rank, U1 ∈
Rl×pH , U2 ∈ Rl×(l−pH), V1 ∈ Rp×pH , V2 ∈ Rp×(p−pH), and
U :=

[
U1 U2

]
and V :=

[
V1 V2

]
are unitary matrices.

Note that in the case with no direct feedthrough, Σ is the
zero matrix, U1 and V1 are empty matrices, and U2 and V2
are arbitrary unitary matrices.

Then, we transform the (completely) unknown input into
two orthogonal components:

d1 = V >1 d, d2 = V >2 d. (4)

Since V is unitary, d = V1d1 +V2d2. Next, we decouple the
output y using a nonsingular transformation

T =

[
T1
T2

]
=

[
IpH

−U>1 RU2(U>2 RU2)−1

0 I(l−pH)

] [
U>1
U>2

]
, (5)

and extract a projection of y using T 2 = U
>
2 to obtain

ẋ = Ax+Bu+G1d1 +G2d2 + w,
y = Cx+Du+H1d1 + v,
z1 = T1y = C1x+D1u+ Σd1 + v1,
z2 = T2y = C2x+D2u+ v2,
z2 = T 2y = C2ẋ+D2u̇+ v2,

(6)

where U2 is obtained from the singular value decomposition

of H =
[
U1 U2

] [Σ 0
0 0

][
V
>
1

V
>
2

]
, while C1 := T1C,

C2 := T2C = U>2 C, C2 := T 2C = U
>
2 C, D1 := T1D,

D2 := T2D = U>2 D, D2 := T 2D = U
>
2 D, G1 := GV1,

G2 := GV2, H1 := HV1 = U1Σ, v1 := T1v, v2 :=

T2v = U>2 v and v2 := T 2v = U
>
2 v. Note that with the

above transformation, the signal d2 does not show up in
the measurement y, which means that there is insufficient
information in the measurement y to estimate the signal d,
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specifically the component given by d2, which is nonempty
when H is not full rank. Thus, in order to estimate the
unknown input signal d in the case with rank deficient
H , the additional measurement given by y is necessary, as
previously stated in Section II.

The similarity transform was also chosen such that the
measurement noise terms for the decoupled outputs are
uncorrelated. The autocorrelations and correlations of v1, v2
and v2, with the initial state and process noise are:

E[v1(t1)v1(t2)>] = T1R(t1)T>1 δ(t1 − t2) := R1(t1)δ(t1 − t2),

E[v2(t1)v2(t2)>] = T2R(t1)T>2 δ(t1 − t2)

= U>2 R(t1)U2δ(t1 − t2) := R2(t1)δ(t1 − t2),

E[v1(t1)v2(t2)>] = δ(t1 − t2)(U>1 R(t1)U>2

− U>1 R(t1)U2(U>2,kR(t1)U2)−1U>2 R(t1)U2) = 0,

E[v2(t1)v2(t2)>] = T 2R(t1)T
>
2 δ(t1 − t2) := R2(t1)δ(t1 − t2),

E[v1(t1)v2(t2)>] = T1E[v(t1)v(t2)>]T
>
2 = 0,

E[v2(t1)v2(t2)>] = T2E[v(t1)v(t2)>]T
>
2 = 0,

E[v1(t1)w(t2)>] = T1E[v(t1)w(t2)>] = 0,

E[v2(t1)w(t2)>] = T2E[v(t1)w(t2)>] = 0,

E[v1(t)x>0 ] = T1E[v(t)x>0 ] = 0,

E[v2(t)x>0 ] = T2E[v(t)x>0 ] = 0,

E[v2(t1)w(t2)>] = T 2E[v(t1)w(t2)>] = 0,

E[v2(t)x>0 ] = T 2E[v(t)x>0 ] = 0,

where R1, R2 and R2 are positive definite.

B. Filter Description

We know from the discrete-time version of the MVU
filter [1], [21] that only the projection of the output y,
corresponding to z2 in this paper, can be considered in the
innovation/residual computation that is then used to update
the state estimate. This has been shown to be necessary
in order that the state estimate is unbiased. On the other
hand, the component of the output corresponding to z1 is
used to estimate d1. In contrast with the discrete-time filter
in which the d2 component can only be estimated with
a unit time delay, in the continuous-time version, we use
z2 for the estimation of d2. Since the distinction between
the propagation and update steps of discrete-time filtering
does not exist in continuous time, unlike [1], only one filter
structure is considered, which is as follows:

d̂1 = M1(z1 − C1x̂−D1u),

d̂2 = M2(z2 − C2Ax̂− C2Bu− C2G1d̂1 −D2u̇),

d̂ = V1d̂1 + V2d̂2,

(7)

˙̂x = Ax̂+Bu+G1d̂1 +G2d̂2 + L(z2 − C2x̂−D2u), (8)

where the matrices L ∈ Rn×(l−pH), M1 ∈ RpH×pH and
M2 ∈ R(p−pH)×(l−pH) are filter gain matrices that are
chosen to minimize the state and input error covariances.

A summary of the optimal continuous-time filter is given
in Algorithm 1. This algorithm has the following properties,
which we will further describe and prove in Section III-C:

Algorithm 1 Input and State Estimation Algorithm

1: Initialize: x̂(t0) = x̂0; P x(t0) = Px
0 ; M1 = Σ−1; Q̂ = Q +

G1M1R1M
>
1 G
>
1 ; Â = A−G1M1C1;

2: while t < tf do
. Unknown input estimation

3: R̃2 = C2(ÂP xÂ> + Q̂)C
>
2 +R2;

4: M2 = (G>2 C
>
2 R̃
−1
2 C2G2)−1G>2 C

>
2 R̃
−1
2 ;

5: d̂1 = M1(z1 − C1x̂−D1u);
6: d̂2 = M2(z2 − C2Ax̂− C2Bu− C2G1d̂1 −D2u̇);
7: d̂ = V1d̂1 + V2d̂2;
8: P d = V1M1(C1P

xC>1 +R1)M>1 V
>
1

+V2(G>2 C
>
2 R̃
−1
2 C2G2)−1V >2 +V1M1C1P

xÂ>C
>
2 M

>
2 V

>
2

+V2M2C2ÂP
xC>1 M

>
1 V

>
1 − V1M1R1M

>
1 G
>
1 C
>
2 M

>
2 V

>
2

−V2M2C2G1M1R1M
>
1 V

>
1 ;

. State estimation
9: A = (I −G2M2C2)Â;

10: Q = (I−G2M2C2)Q̂(I−G2M2C2)>+G2M2R2M
>
2 G
>
2;

11: L = P xC>2 R
−1
2 ;

12: ˙̂x = Ax̂+Bu+G1d̂1 +G2d̂2 + L(z2 − C2x̂−D2u);
13: Ṗ x = AP x + P xA

>
+Q− P xC>2 R

−1
2 C2P

x;
14: end while

Theorem 1 (Minimum-variance unbiased estimation). If
rk(C2G2) = p − pH and (A,C2) is detectable, where the
matrix A is as defined in Algorithm 1, then the filter gains,
L, M1 and M2, given in Algorithm 1 provide the unbiased,
best linear estimate (BLUE) of the unknown input and the
minimum-variance unbiased estimate of system states.

Theorem 2 (Convergence to steady-state). Let rk(C2G2) =
p−pH . Then, with P x(t0) � 0, the filter’s Riccati differential
equation given by

Ṗ x = AP x + P xA
>

+Q− P xC>2 R
−1
2 C2P

x, (9)

with A and Q given in Algorithm 1, (exponentially) con-
verges to a unique stationary solution if and only if

(i) The pair (A,C2) is detectable, and
(ii) The pair (A,Q

1
2 ) is stabilizable,

where the matrices A and Q are as defined in Algorithm 1.

Remark 1. In the special case (C = C, D = D, H = H),
from which follows C2 = C2, a system property known
as strong observability4 implies that the pair (A,C2) is
observable; and that C2 and G2 have full rank. A full-rank
G2 is a necessary condition for rank(C2G2) = p − pH ,
while C2 with full rank is also necessary if l = p. Hence,
strong observability is closely related to the fact that a
minimum-variance unbiased estimator exists and admits a
steady-state solution. A similar condition also holds for the
optimal discrete-time filter in [1].

C. Filter Analysis

We first provide a proof of Theorem 1 by showing an
equivalence of the problem to a continuous-time system
without unknown inputs and as such, we can apply the results
of the Kalman-Bucy filter. Then, we provide an alternative

4Strong observability is the condition under which the initial condition
x0 and the unknown input signal history, d(τ) for all 0 ≤ τ ≤ t can be
uniquely determined from the measured output history y(τ) for all 0 ≤
τ ≤ t (see, e.g., [22])
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derivation for the special case by means of limiting case
approximations of the optimal discrete-time filter [1]. In the
process, we gain insight into the subtle difference between
the special case continuous-time filter and the discrete-time
filter in [1]. Finally, we provide a proof of Theorem 2
based on the steady-state Kalman-Bucy filter properties of
the equivalent problem.

1) Proof 1: By Equivalent System without Unknown In-
puts: As was observed in [1], the unknown input can be
viewed as consisting of a known component given by the
input estimate, and a zero-mean random variable with known
variance which can be dealt in the same manner as with
process and measurement noises:

d1 = d̂1 + (d1 − d̂1) := d̂1 + d̃1,

d2 = d̂2 + (d2 − d̂2) := d̂2 + d̃2.
(10)

From (7) and choosing the matrices M1 and M2 such that
M1Σ = I and M2C2G2 = I , which is possible because Σ
and C2G2 have full rank by assumption, we obtain

d̃1 = −M1(C1x̃+ v1), (11)

d̃2 = −M2C2Âx̃+M2C2G1M1v1 −M2v2 −M2C2w,

where Â := A − G1M1C1. Since we can design L such
that x̃ := x − x̂ tends exponentially towards zero (shown
below), and the process and measurement noises have zero
mean, both d̃1 and d̃2 exponentially tend towards zero-mean
random variables with the following (auto-)correlations:

E[d̃1(t1)d̃1(t2)>] := P d
1 (t1)δ(t1 − t2)

= (M1R1M
>
1 +M1C1P

xC>1 M
>
1 )(t1)δ(t1 − t2),

(12)

E[d̃1(t1)d̃2(t2)>] := P d
12(t1)δ(t1 − t2)

= (M1C1P
xÂ>C

>
2 M

>
2 −M1R1M

>
1 G
>
1 C
>
2 M

>
2 )(t1)

δ(t1 − t2),

(13)

E[d̃2(t1)d̃2(t2)>] := P d
2 (t1)δ(t1 − t2)

= (M2R̃2M
>
2 )(t1)δ(t1 − t2),

(14)

E[d̃(t1)d̃(t2)>] := P d(t1)δ(t1 − t2)
= (V1P

d
1 V
>
1 +V1P

d
12V

>
2 +V2P

d>
12 V

>
1 +V2P

d
2 V
>
2 )(t1)

δ(t1 − t2),
(15)

where we defined E[x̃(t1)x̃>(t2)] := P x(t1)δ(t1 −
t2), R̃2 := C2(ÂP xÂ> + Q̂)C

>
2 + R2 and Q̂ :=

Q + G1M1R1M
>
1 G
>
1 , as well as omitted E[x̃(t1)v>1 (t2)],

E[x̃(t1)v>2 (t2)] and E[x̃(t1)w>(t2)] due to their negligible
contributions to the above correlations.

To obtain the best linear unbiased estimate of both pro-
jections of the unknown inputs, d̂1 and d̂2, as in its discrete-
time counterpart [1], we choose M1 and M2 such that the
assumption in the Gauss-Markov Theorem is satisfied, as
outlined in [18, pp. 96-98]:

M1 = Σ−1,M2 = (G>2 C
>
2 R̃
−1
2 C2G2)−1G>2 C

>
2 R̃
−1
2 . (16)

Next, substituting (10) into the system dynamics (6), and
using (8) and (11), we obtain the state estimate error system

˙̃x = ẋ− ˙̂x = Ax̃+ w − L(C2x̃+ v2), (17)

where A := (I −G2M2C2)Â and w := (I −G2M2C2)w−
(I − G2M2C2)G1M1v1 − G2M2v2. Note that even during

transients, where the d̃1 and d̃2 have non-zero means, the
terms contributing to these biases are functions of x̃ and
are thus absorbed into the A. More importantly, the state
estimate error dynamics in (17) is the same state estimate
error dynamics of a Kalman-Bucy filter [2] for a linear
system without unknown inputs:

ẋe = Axe + w, ye = C2xe + v2.

Since the objective of both systems is the same, i.e. to obtain
an unbiased minimum-variance filter, they are equivalent
systems from the perspective of optimal filtering. Hence, the
optimal filter is obtained, as in [2], when L is chosen as

L = P xC>2 R
−1
2 , (18)

where the state estimate error covariance, P x, is obtained
from the Riccati differential equation given in (9) where the
noise intensity, Q, is obtained from

E[w(t1)w>(t2)] := Q(t1)δ(t1 − t2)

= ((I −G2M2C2)Q̂(I −G2M2C2)>

+G2M2R2M
>
2 G
>
2 )(t1)δ(t1 − t2).

(19)

Moreover, since we assume that (A,C2) is detectable, the
eigenvalues of A − LC2 can be designed to have negative
real parts. Since the linear error system (17) is stable, E[x̃]
tends to zero, and the effect of the initial condition x̂0 decays
exponentially. In summary, the proposed filter provides the
best linear unbiased estimate of the unknown input and the
minimum-variance unbiased estimate of the state; thus, we
have proven the claims of Theorem 1.

2) Proof 2: By Limiting Case Approximations: An al-
ternate derivation of the optimal filter for the special case
(C = C, D = D, H = H ⇒ C2 = C2) can be obtained
from the optimal discrete-time filter [1] using limiting case
approximations. Although this derivation lacks rigor due to
various approximations, this is interesting for understanding
the connection between the continuous- and discrete-time
filters and also from a pedagogical point of view, since this is
often used to derive the continuous-time Kalman-Bucy filters
in textbooks (e.g., [17], [23]).

If the sampling period 4t is small, we can use Euler’s
approximation to write the discretized version of (6) as

xk+1 ≈ (I +A4t)xk +B4tuk +G14td1,k
+G24td2,k + wk

:= Adxk +Bduk +G1,dd1,k +G2,dd2,k + wk,
yk = Cxk +Duk +H1dk + vk

:= Cdxk +Dduk +H1,ddk + vk,
z1,k = C1xk +D1uk + Σd1,k + v1,k

:= C1,dxk +D1,duk + Σdd1,k + v1,k,
z2,k = C2xk +D2uk + v2,k := C2,dxk +D2,duk + v2,k,

(20)

where the process and measurement noises are wk ∼
(0, Q4t) and vk ∼ (0, R/4t), in which Qd ≈ Q4t as
4t→ 0, and the discrete measurement noise is approximated
as the average value of the continuous noise [16].

Since the first component of the unknown input can com-
puted pointwise without delay, we expect M1,k →M1. Thus,
we have the estimate d̂1 as in (7) directly from the discrete-
time version given by d̂D1,k = M1,k(z1,k−C1,dx̂k|k−D1,duk)
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[1]. On the other hand, the limiting case approximation of
the second component of the unknown input is given by:

d̂D2,k−1 = M2,k(z2,k − C2,d(Adx̂k−1|k−1 +Bduk−1
+G1,dd̂1,k−1)−D2,duk)

≈M2,k4t( z2,k−C2,dx̂k−1|k−1−D2,duk−1

4t −D2
uk−uk−1

4t

−C2Buk−1 − C2Ax̂k−1|k−1 − C2G1d̂1,k−1)

= M2,k4t( z2,k−ẑ2,k−1

4t − C2Ax̂k−1|k−1 −D2
uk−uk−1

4t

−C2Buk−1 − C2G1d̂1,k−1),

where the first equation is the discrete-time version from
[1], and we defined M2 := lim4t→0M2,k4t and ẑk−1 :=
T2,dŷk−1 := T2,d(Cdx̂k−1|k−1 +Dduk−1), as well as substi-
tuted the approximate matrices Ad ≈ I +A4t, Bd ≈ B4t,
C2,d ≈ C2, D2,d ≈ D24t and G1,d ≈ G14t from (20).
Taking the limit of 4t→ 0, we obtain

d̂2 = M2(z2 − C2Ax̂− C2Bu− C2G1d̂1 −D2u̇), (21)

where we have replaced the term lim4t→0
z2,k−ẑ2,k−1

4t =

T2(lim4t→0
yk−yk−1

4t +
Cdx̃k−1|k−1+vk−1

4t ) with z2 = T2y =

T2(lim4t→0
yk−yk−1

4t + vd4t−(vk−vk−1)
4t ) which we assume

is obtained from the noisy measurement of y according to (6)
(with C = C, D = D, H = H) and where we have defined
x̃k−1|k−1 := xk−1 − x̂k−1|k−1. This indirectly implies that
the optimal discrete-time filter “differentiates” the second
projection of the output, z2, using finite difference. Moreover,
we can infer that the equivalent discrete-time estimation of
d2,k−1 corresponding to (21) is given by

d̂2,k−1 = M2,k(z2,k − C2,d(Adx̂k−1|k−1 +Bduk−1 (22)

+G1,dd̂1,k−1)−D2,duk − C2,dx̃k−1|k−1 + v2,d4t− v2,k),

which would be unimplementable in discrete time because
the noise terms and the true state are not available. Thus, to
obtain the best linear unbiased estimate of both projections of
the unknown inputs, d̂1,k = d̂D1,k and d̂2,k−1, we choose M1,k

and M2,k as in [1], such that M1,kΣd = I , M2,kC2,dG2,d =
I and the assumption in the Gauss-Markov Theorem is
satisfied [18, pp. 96-98]:

M1,k = Σ−1d ,

M2,k = (G>2,dC
>
2,dR̃

−1
2,kC2,dG2,d)−1G>2,dC

>
2,dR̃

−1
2,k,

(23)

where R̃2,k := C2,d(Âd − I)P x
k−1|k−1(Âd − I)>C>2,d +

C2,dQ̂k−1C>2,d + R24t, Âd := Ad − G1,dM1,kC1,d and
Q̂k−1 := Qd + G1,dM1,k−1R1,dM

>
1,k−1G

>
1,d, and we have

applied E[v2,dv
>
2,d] := R2,d ≈ R2

4t . Then, using the ap-
proximate matrices (20), substitutingP x

k−1|k−1 ≈ Px

4t and

R̃2,k ≈ R̃2

4t , as well as taking the limit of 4t → 0, we
obtain M1 = lim4t→0M1,k and M2 = lim4t→0M2,k as
are given in (16).

Furthermore, with d̂1,k = d̂D1,k and d̂2,k given by (22), the
unknown input estimate errors are given by:

d̃1,k := d1,k − d̂1,k = −M1,kC1,dx̃k|k −M1,kv1,k,

d̃2,k−1 := d2,k−1 − d̂2,k−1
= −M2,kC2,d(Âd − I)x̃k−1|k−1 −M2,kC2,dwk−1

+M2,kC2,dG1,dM1,k−1v1,k−1 −M2,kv2,d4t.

Hence, the error covariance matrices can be computed as

P d
1,k := E[d̃1,kd̃

>
1,k] = M1,k(C1,dP

x
k|kC

>
1,d +R1,k)M>1,k,

P d
12,k−1 := E[d̃1,k−1d̃>2,k−1]

≈M1,k−1C1,dP
x
k−1|k−1(Â>d − I)C>2,dM2,k

−M1,k−1R1,k−1M>1,k−1G
>
1,dC

>
2,dM

>
2,k,

P d
2,k−1 := E[d̃2,k−1d̃>2,k−1] = M2,kR̃2,kM

>
2,k.

As above, substituting the approximate matrices and taking
the limit of 4t → 0, we obtain the expressions for P d

1 :=
lim4t→0 P

d
1,k4t, P d

12 := lim4t→0 P
d
12,k−14t and P d

2 :=

lim4t→0 P
d
2,k−14t given by (12), (13) and (14).

Next, we derive the continuous-time state estimate and
error covariance dynamics from the ULISE variant of the
discrete-time filter [1] in a similar manner:

x̂?k|k = Adx̂k−1|k−1 +Bduk−1 +G1,dd̂1,k−1 +G2,dd̂2,k−1,

x̂k|k = x̂?k|k + L̃k(z2,k − C2,dx̂
?
k|k −D2,duk)

≈ (I +A4t)x̂k−1|k−1 +B4tu+G14td̂1
+G24td̂2 + L̃k(z2 − C2(I +A4t)x̂k−1|k−1
−D2u− C2B4tu+G14td̂1 +G24td̂2),

(24)

⇒ x̂k|k−x̂k−1|k−1

4t ≈ L̃k

4t (z2 − C2x̂k−1|k−1 −D2u)

+Ax̂k−1|k−1 +Bu+G1d̂1 +G2d̂2,

where we have neglected higher order terms in the latter term
in the final equation above. Taking the limit of 4t → 0,
we obtain the continuous state estimate dynamics as above,
i.e. (8), if we define L := lim4t→0

L̃k

4t , as is done for the
continuous-time Kalman-Bucy filter. From the state estimate
error covariance given by

P x
k|k := E[(xk − x̂k|k)(xk − x̂k|k)>]

= P ?x
k|k − L̃kC2,dP

?x
k|k − P ?x

k|kC
>
2,dL̃

>
k + L̃kŘkL̃

>
k ,

(25)

where P ?x
k|k := E[(xk − x̂?k|k)(xk − x̂?k|k)>] and Řk :=

C2,dP
?x
k|kC

>
2,d + R2,d, we can find the optimal L̃k by mini-

mizing the trace of (25) to obtain

L̃k = P ?x
k|kC

>
2,d(C2,dP

?x
k|kC

>
2,d +R2,d)−1,

⇒ L̃k

4t = P ?x
k|kC

>
2,d(C2,dP

?x
k|kC

>
2,d4t+R2,d4t)−1.

(26)

As 4t → 0, if P ?x
k|k is finite, and we let P ?x

k|k → P x, then
we obtain the filter gain L as given in (18).

Substituting the optimal L̃k (26) into (25), we obtain P x
k|k,

and into the discrete-time optimal state estimation dynamics
(24) to derive the state error covariance matrix, P ?x

k|k (similar
derivation in [1]):

P x
k|k = P ?x

k|k − P ?x
k|kC

>
2,dŘ

−1
k C2,dP

?x
k|k, (27)

P ?x
k|k = (Âd −G2,dM2,kC2,d(Âd − I))P x

k−1|k−1

(Âd −G2,dM2,kC2,d(Âd − I))> + (I −G2,dM2,kC2,d)

Q̂k−1(I −G2,dM2,kC2,d)> +G2,dM2,kR2,dM
>
2,kG

>
2,d(4t)2.

Applying the approximation matrices defined in (20) and
neglecting higher order terms, we have

P ?x
k|k − P ?x

k−1|k−1

4t ≈ AP ?x
k−1|k−1 + P ?x

k−1|k−1A
>

+ (I −G2M2C2)Q̂(I −G2M2C2)> +G2M2R2M
>
2 G
>
2

− P ?x
k−1|k−1C

>
2 (C2P

?x
k−1|k−1C

>
2 4t+R2)−1C2P

?x
k−1|k−1.
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Next, if P ?x
k|k is finite, as 4t → 0, we obtain the Riccati

differential equation governing P x given in (9), where we
applied P x = P ?x, which can be deduced from x̂k|k ≈
x̂?k|k +G2d̂24t by taking the limit of 4t→ 0.

3) Filter Convergence and Optimality: For linear time-
invariant systems, the conditions for the convergence of the
filter gains to steady-state of the proposed filter are closely
related to the existence and the uniqueness of stabilizing
solutions of its continuous-time algebraic Riccati equation
(CARE), i.e. (9) with Ṗ x = 0. These conditions are given
in Theorem 2 and the proof of the results can be found in
[18, Sections 16.7-16.8]. The optimality of the filter also
follows from the equivalence of the proposed filter to a
Kalman-Bucy filter [2] without unknown inputs. From the
perspective of limiting case approximations, the discrete-time
filter in [1] is globally optimal and converges to a steady-
state solution for arbitrary 4t, and the Euler approximation
converges to the continuous system. So, from the optimality
of the Kalman-Bucy filter, it can be inferred that limiting
case filter is also optimal. Furthermore, for the special case
(C2 = C2) the connection between strong observability and
the observability of (A,C2), as well as C2 and G2 being full
rank (Remark 1) follow directly from

n+ p = rk

[
sI −A −G
C H

]
= rk

sI −A −G

C U

[
Σ 0
0 0

]
V >


= rk

[
I 0
0 T

]sI −A −G

C U

[
Σ 0
0 0

]
V >

[I 0
0 V

]

= rk

sI −A −GV

TC TU

[
Σ 0
0 0

] = rk

sI −A −G1 −G2

C1 Σ 0
C2 0 0


= rk

I G1Σ−1 0
0 I 0
0 0 I

sI −A −G1 −G2

C1 Σ 0
C2 0 0


= rk

sI − Â 0 −G2

C1 Σ 0
C2 0 0

 = rk

[
sI − Â −G2

C2 0

]
+ pH

= rk

[
sI − Â −G2

C2 0

] [
I 0

−M2C2Â I

]
+ pH

= rk

[
sI −A −G2

C2 0

]
+ pH ,

where the first equality is the rank condition for strong
observability given in [22], the third from last equality holds
because Σ is square and has full rank pH , and we have
assumed that n ≥ l ≥ 1 and l ≥ p ≥ 0.

IV. STATE-ONLY ESTIMATION

In this section, we once again consider the special case
with the restriction that the measurement y, as well as u̇ are
not available. As argued in Section III-A, the unknown input
cannot be (fully) estimated, thus the objective of this section
is to derive a state-only estimation algorithm that does not
require the measurement of y.

The approach taken for this derivation is to modify the
input and state estimation algorithm in the previous section
(Algorithm 1) to accommodate the absence of the measure-
ment y by replacing z2 with ż2 := T2ẏ in (7), for which we

Algorithm 2 State-Only Estimation Algorithm

1: Initialize: x̂(t0) = x̂0; P x(t0) = Px
0 ; M1 = Σ−1; Â = A −

G1M1C1; B̂ = B −G1M1D1;
2: while t < tf do
3: R̃2 = C2(ÂP xÂ> +Q)C>2 ;
4: M2 = (G>2 C

>
2 R̃
−1
2 C2G2)−1G>2 C

>
2 R̃
−1
2 ;

5: A = (I −G2M2C2)Â;
6: B = (I −G2M2C2)B̂;
7: G = (I −G2M2C2)G1;
8: Q = (I −G2M2C2)Q(I −G2M2C2)>;
9: L = P xC>2 R

−1
2 ;

10: v2 ∼ N (0, R2);
11: θ̇ = (A−LC2)x̂+ (B−LD2)u+GM1z1 +L(z2 + v2);
12: x̂ = G2M2z2 −G2M2D2u+ θ;
13: Ṗ x = AP x + P xA

>
+Q− P xC>2 R

−1
2 C2P

x;
14: end while

only have the measurement of y. However, this substitution
requires that the measurement noise term v is differentiable,
even when ẏ is never explicitly computed. Therefore, we
further restrict the class of problems to the case in which
v = 0 (an assumption we will relax in a future work). On
the other hand, we note that the computation of L in (18),
we require the invertibility of R2. Thus, a fictitious zero-
mean noise v2 with noise intensity R2 � 0 is added to the
measurement z2, i.e. z′2 = z2 + v2. Finally, to circumvent
the need to have direct access to ẏ and u̇, we propose
an algorithm in Section IV-A that produces the same state
estimate as (8) with only y and u, which are known.

In brief, the modifications result in an algorithm similar
to Algorithm 1, but with R1 = 0 and R2 = 0, and
with the same state estimate in Section IV-A. A summary
of the new algorithm is given in Algorithm 2. Given the
equivalence of the algorithms in the special case, it follows
directly that Theorem 2 and Remark 1 hold, i.e. the condition
rk(C2G2) = p − pH and the strong observability of the
system are sufficient conditions for the existence of a steady-
state filter. Note, however, that the addition of a fictitious
noise may degrade the performance of the proposed filter.

A. State-Only Estimation Algorithm

After rearranging and combing terms, the state estimation
(8) can be rewritten as follows:

˙̂x = Ax̂+Bu+G1M1(z1 − C1x̂−D1u)
+G2M2(ż2 − C2Ax̂− C2Bu− C2G1M1(z1
−C1x̂−D1u)−D2u̇) + L(z′2 − C2x̂−D2u)

= (A− LC2)x̂+ (B − LD2)u+GM1z1
+Lz′2 +G2M2ż2 −G2M2D2u̇
:= h(x̂, u, z1, z

′
2) + Φ1ż2 + Φ2u̇,

(28)

where B := (I − G2M2C2)(B − G1M1D1), G = (I −
G2M2C2)G1M1, and z2 is replaced with z′2 = z2+v2, where
v2 is a fictitious zero-mean noise with a chosen intensity R2.
Then, to derive an equivalent without ẏ and u̇, we let

θ̇ = h(x̌, u, z1, z
′
2), x̌ = Φ1z2 + Φ2u+ θ. (29)

Taking the derivative of x̌, we have
˙̌x = Φ1ż2 + Φ2u̇+ θ̇ = Φ1ż2 + Φ2u̇+ h(x̌, u, z1, z

′
2).
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So the output x̌ of (29) is identical to that of x̂ in (28).
However, (29) does not include ż2 and u̇, as desired.

V. SEPARATION PRINCIPLE

We now investigate the stability of the closed-loop system,
when the controller is a state feedback controller with
disturbance rejection terms using the estimates from (7),(8):

u = −Kx̂− J1d̂1 − J2d̂2, (30)

where K is the state feedback gain, and J1 and J2 are the
disturbance rejection gains (J1 = J2 = 0 in Algorithm 2).
The following theorem shows that a separation principle for
linear stochastic systems with unknown input holds, i.e., the
designs of the controller and the state and input estimator
can be carried out independently.

Theorem 3 (Separation Principle). The state feedback con-
troller gain K in (30) can be designed independently of the
state estimator gain L in (18) (cf. Algorithms 1 and 2).

Proof. Substituting (30) into (6) and from (17),(10), (11) (for
ALISE, with C = C, D = D and H = H), we have[
ẋ
˙̃x

]
=

[
A−BK B(K − J1M1C1 − J2M2C2Â)

0 A− LC2

] [
x
x̃

]
+

[
G1 −BJ1 G2 −BJ2

0 0

] [
d1
d2

]
(31)

+

I −BJ2M2C2 0
BJ2M2C2G1M1

−BJ1M1
0 −BJ2M2

0 I 0 −L 0



w
w
v1
v2
v2

.
Since the state matrix is triangular, the eigenvalues are of
A − BK and those of A − LC2. Thus the stability of the
state and input feedback and estimator are independent. �

Hence, the state feedback gain K can be independently
designed (e.g., with Linear Quadratic Regulator (LQR)) with
no effect on the stability of the estimator in Algorithms 1
and 2. Moreover, J1 and J2 in Algorithm 1 can be chosen
such that the effect of disturbance input on the closed loop
system is reduced. However, J1 and J2 must be chosen such
that u, d̂1 and d̂2 can be uniquely determined, since the
equations for d̂1 and d̂2 in (7) become implicit equations
and the dependence on u̇ in d̂2 also results in a differential
equation for u.

VI. ILLUSTRATIVE EXAMPLE

Fig. 1. A helicopter near hover [24].

We consider the linearized longitudinal dynamics of a
helicopter [24] depicted in Fig. 1:

θ̇ = q,
q̇ = −0.415q − 0.011u+ 6.27δc − 0.011wh,
u̇ = 9.8θ − 1.43q − 0.0198u+ 9.8δc − 0.0198wh,
ẏ = u,

(32)

where the system states are the fuselage pitch angle θ, the
pitch rate q̇, the horizontal velocity of the center of gravity u
and the horizontal distance from the desired hover point y;
while the only control input is the tilt angle of the rotor
thrust vector δc. The variable wh = wd + w represents
a horizontal wind disturbance with a deterministic time-
varying component, wd, and a stochastic component, w,
modeled as one of the following:

(i) A first order Gauss-Markov process, i.e. ẇ = −0.2w+
6ξ, driven by a zero-mean, continuous time, Gaussian
white noise, ξ, with intensity Q = 5× 10−4.

(ii) A zero-mean, continuous time, Gaussian white noise,
w, with intensity Q = 5× 10−4.

In both cases, we have measurements of y, u and q only,
each with a measurement noise intensity of 1× 10−3, 1.6×
10−3 and 0.9× 10−3, respectively, while y is assumed to be
available with C = C, D = D and H = H and similarly
are noisy with noise intensity of 2 × 10−3, 1 × 10−3 and
1.9 × 10−3, respectively. Furthermore, the measurement of
u is plagued by the presence of an additive a time-varying
bias, em, which in this example is a sinusoidal signal.

Since there is a separation principle for the controller
and estimator of this system (Section V), we design them
independently. The controller we chose is the LQR, whereas
the estimator is the filter proposed in this paper. For the
LQR gain, K, we have chosen the following cost matrices:
QLQR = C>LQRCLQR and RLQR = 5, where CLQR :=[
0 0 0 1

]
, while J1 = 0 and J2 = −1.943 × 10−3 are

chosen to minimize |G1 −BJ1| and |G2 −BJ2|.
We implemented the LQR state feedback control law and

the filter described above in MATLAB/Simulink on a 2.2
GHz Intel Core i7 CPU for both cases and the results are
shown in Fig. 2, when the horizontal wind is modeled as the
sum of a deterministic time-varying component and a first
order Gauss-Markov process (Case (i)) and in Fig. 3, when
the horizontal wind is modeled as the sum of a deterministic
time-varying component and a zero-mean Gaussian white
noise (Case (ii)). Note that the projections of the unknown
input vector, i.e. d1 and d2, obtained with the transformation
(5), correspond to real unknown signals, in that d1 = em
and d2 = wd. Thus, we observe from the figures that the
proposed filter successfully estimates the system states and
also the unknown inputs, wd and em, and the traces of the
continuous estimate error covariance matrices of both states
and unknown inputs converge in less than 0.5 ms. Note that
in Fig. 2 and 3, the measured ẏ (green) is faulty, hence the
estimates (blue) in both cases were shown to be capable of
tracking the actual/true value (red) while rejecting the fault.
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Fig. 2. Actual states θ, q, y, u and their estimates; unknown inputs d1, d2,
and their estimates; as well as trace of estimate error covariance of states
and unknown inputs, when the horizontal wind is modeled as the sum of
a deterministic time-varying component and a first order Gauss-Markov
process (Case (i)).
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Fig. 3. Actual states θ, q, y, u and their estimates; unknown inputs d1, d2,
and their estimates; as well as trace of estimate error covariance of states
and unknown inputs, when the horizontal wind is modeled as the sum of
a deterministic time-varying component and a zero-mean Gaussian white
noise (Case (ii)).

VII. CONCLUSION

This paper presented an optimal filter for linear time-
invariant continuous-time stochastic systems that simultane-
ously estimates the states and unknown inputs in an unbiased
minimum-variance sense. The proposed filter was derived by
reducing the system to an equivalent system such that the
Kalman-Bucy filtering techniques can be directly applied,
and by limiting case approximations of the optimal discrete-
time filter for a special case. We also provided conditions
under which the proposed filter has a steady-state solution,
and presented a complementary algorithm for the special case
when the ‘required’ additional measurement is not available.
Moreover, a principle of separation of estimation and control
was shown to also hold for linear systems with unknown
inputs, and the simulation of a helicopter hovering example

demonstrates these claims. A possible future direction is the
extension of the filtering techniques to linear time-varying
continuous-time systems and nonlinear systems.
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