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Abstract— This paper is concerned with the study of flat out-
puts for multiple-input-multiple-output (MIMO) controllable
linear time-invariant discrete- and continuous-time systems
in state-space representation. Leveraging the equivalence of
flatness to an estimation-theoretic system property known as
strong observability, a quick computational test is developed
for ascertaining if an output candidate is flat and the subspace
of flat outputs can be constructively characterized. Moreover,
we propose a computational method to find differentially
(continuous-time), as well as non-causal and causal difference
(discrete-time) flat outputs via a system transformation into
a special control canonical form. Finally, design principles
for flatness-based trajectory planning and tracking control
for discrete-time systems are presented, which to our best
knowledge, have yet to be successfully demonstrated.

I. INTRODUCTION
A system property known as flatness first introduced in [1]

is widely used for analyzing and synthesizing controllers for
nonlinear dynamical systems. Flatness-based techniques have
been developed and successfully applied to many applica-
tions, and is employed even for linear time-invariant systems
as a versatile technique for solving trajectory planning,
feedforward and set point control problems.

Literature review. Fliess et al. [1], [2] have shown that
linear systems are flat if and only if the system is control-
lable and that flat outputs are not unique. Moreover, they
established that all flat outputs are in the linear form without
outlining a test for checking if any of these candidates are flat
outputs. Using polynomial matrices, Lévine and Nguyen [3]
provided an indirect test by providing necessary conditions
for flat outputs in multiple-input-multiple-output (MIMO)
linear time-invariant continuous-time systems and proposed
a trajectory planning approach based on these matrices. In
contrast, Sira-Ramı́rez and Agrawal [4], and Ben Abdallah
et al. [5] provided a means of constructing one flat output
for MIMO linear time-invariant continuous-time systems and
demonstrated their use for flatness-based trajectory planning
and tracking control.

On the other hand, less attention has been given to
linear time-invariant discrete-time systems. Sira-Ramı́rez
and Agrawal [4] has discussed this class of systems as a
counterpart to continuous-time systems, thus enabling the
construction of one specific MIMO flat output. However,
the equivalent notion of differential flatness for discrete-
time systems is a non-causal version of difference flatness,
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which would render any such flatness based feedback control
unimplementable. This problem was identified in [4] and a
solution for only single-input-single-output (SISO) systems
was presented. Hence, the characterization of MIMO causal
difference flat outputs and its application to trajectory plan-
ning and tracking control remain an open problem.

Contributions. First, the equivalence of flatness to an
estimation-theoretic system property known as strong ob-
servability (e.g., [6], [7]) is demonstrated. Consequently,
previously established computational techniques can be made
available for checking the flatness of an output candidate and
for constructively characterizing the subspace of flat outputs,
which may facilitate a ‘wise’ choice of flat outputs for certain
applications. In addition, we provide a computational ap-
proach to find MIMO differentially (continuous-time) as well
as non-causal and causal difference (discrete-time) flat out-
puts. Finally, we demonstrate that causal difference flatness
can be capitalized on for trajectory planning and tracking
control of linear time-invariant discrete-time systems using
an example of an autonomous helicopter landing on a slope.

II. PROBLEM FORMULATION

We consider controllable (hence flat [1], [2]) linear time-
invariant (LTI) systems in the state-space representation:
Continuous-time:

ẋ(t) = Ax(t) +Bu(t), (1)

Discrete-time:
x[k + 1] = Ax[k] +Bu[k], (2)

where x(t), x[k] ∈ Rn and u(t), u[k] ∈ Rm are the state
and input vectors at time t and k, respectively. The matrices
A and B are known, and without loss of generality, we
assume rank(B) = m. (Otherwise, we can retain the linearly
independent columns and the “remaining” inputs still affect
the system in the same way).

The main objective of this paper is to characterize the
subspace of flat outputs (as will be formally defined in
Definitions 1, 2 and 3) for systems (1) and (2). As is shown in
[1, p.1334], all flat outputs1, y(t) ∈ Rp, for LTI continuous-
time systems are of the following linear form:

y(t) = Cx(t) +
∑r
i=0Di

di

dti (u(t)), (3)

where r is finite. Analogously, for discrete-time systems, we
also consider linear flat outputs, y[k] ∈ Rp:

y[k] = Cx[k] +
∑r
i=0Diu[k + i], (4)

y[k] = Cx[k] +
∑r
i=0Diu[k − i], (5)

1Note that the dimension of the flat output vector is shown to be equal to
the dimension of the input vector, i.e., p = m (cf. [1], [2]). This matches
our observation in Theorem 2.
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where the former flat outputs are non-causal and the latter
are causal. Note that causality of the flat outputs are not
necessary for many applications such as trajectory gener-
ation but would be necessary when used as feedback in
controller design problems. In our search for causal flat
outputs, we additionally assume that the discrete-time system
is causal/reversible, with the implication that A is invertible
[8]. Thus, the problem of characterizing flat outputs of (1)
and (2) is equivalent to finding the matrices C and {Di}ri=0

such that the outputs given by (3), (4) and (5) are flat.
The objective of this paper is to develop computational

tools for MIMO linear time-invariant flat systems (both with
continuous- and discrete-time dynamics). Specifically, we
outline procedures to test if an output is flat, to automatically
find flat outputs and to enable flatness based trajectory
planning and tracking control.

III. PRELIMINARY MATERIAL

Flatness has been primarily defined for continuous-time
systems [1] in which the states and inputs can be represented
as functions of some variables known as flat outputs and a
finite number of their derivatives. On the other hand, flatness
for discrete-time systems can be defined with the existence of
functions involving a finite number of forward or backward
values. Thus, there are three possible notions of flatness,
which we define next.

Definition 1 (Differential Flatness (Continuous-Time)). A
linear time-invariant continuous-time system (1) is differ-
entially flat if there exists an output y(t) (of the linear
form in (3)) such that the states x(t) and inputs u(t) are
representable as functions of the outputs y and a finite
number of its derivatives with respect to time, y(i)(t), i =
1, . . . , q.

Definition 2 (Forward Difference Flatness (Non-Causal,
Discrete-Time)). A linear time-invariant discrete-time system
(2) is forward difference flat if there exists an output y[k]
(of the linear non-causal form in (4)) such that the states
x[k] and inputs u[k] are representable as functions of the
outputs y[k] and a finite number of its forward values,
y[k + i], i = 1, . . . , q.

Definition 3 (Backward Difference Flatness (Causal, Dis-
crete-Time)). A linear time-invariant discrete-time system
(2) is backward difference flat if there exists an output
y[k] (of the linear causal form in (5)) such that the states
x[k] and inputs u[k] are representable as functions of the
outputs y[k] and a finite number of its backward values,
y[k − i], i = 1, . . . , q.

A further definition that is used throughout the paper is
the multiple-input-multiple-output (MIMO) invariant zeros.
To this end, using bilateral Laplace and Z-transforms of the
system dynamics (1), (2) and the output equations (3), (4)
and (5), we first obtain the system matrix S(λ), upon which
the definition of invariant zeros is based, as

S(λ) :=

[
A− λI B
C

∑r
i=0 λ

iDi

]
, (6)

where λ represents the differential, the forward difference
and the backward difference operators, respectively, whereas
we have λ = λ for differential and forward difference flatness
and λ = 1/λ for backward difference flatness.

Definition 4 (Invariant Zeros). The invariant zeros λ of the
system matrix S(λ) in (6) are defined as the finite values of
λ for which the matrix S(λ) drops rank, i.e.,

rk(S(λ)) < nrank(S),

where nrank(S) denotes the normal rank (maximum rank
over λ ∈ C) of S(λ).

Moreover, we define a system property known as strong
observability that is used in the estimation theory literature
(e.g., [6], [7]), which will prove useful in determining system
flatness later in this paper.

Definition 5 (Strong observability). A linear system is
strongly observable, if y[k] = 0 (k ∈ N), y(t) = 0 (t > 0)
implies x[k] = 0 (k ∈ N), x(t) = 0 (t > 0) irrespective of
the input and the initial state.

A helpful result concerning strong observability is given
in the next theorem (see, e.g., [6], [7] for details):

Theorem 1 (Strong Observability). A linear system is
strongly observable if and only if the system has no invariant
zeros and has full normal rank, i.e., rk(S(λ)) = nrank(S) =
n+m for all λ ∈ C.

IV. FLATNESS AND STRONG OBSERVABILITY

By Definitions 1 and 2, it is clear that differential and
difference flatness requires that the inputs u(t), u[k] ∈ Rm
and states x(t), x[k] ∈ Rn can be recovered as functions
of the flat outputs y(t), y[k] ∈ Rp and their derivatives
and forward/backward values. Thus, this problem is very
much like the estimation problem of states and unknown
inputs based on observations/outputs (see, e.g., [7]); hence
techniques from the latter field are also applicable for this
problem. Specifically, the following necessary and sufficient
condition for flatness is equivalent to the system property
known as strong observability as defined in Definition 5.

Theorem 2 (Necessary and Sufficient Condition). The out-
puts y(t) ∈ Rp and y[k] ∈ Rp in (3), (4) and (5) are flat
outputs of (1) and (2) if and only if the overall system
(A,B,C, {Di}ri=0) is strongly observable, or equivalently,
has no invariant zeros and has full normal rank, i.e.,

rk(S(λ)) = n+m, ∀λ ∈ C, (7)

where the system matrix S(λ) is given in (6). Furthermore,
assuming no redundancy, the number of flat outputs is equal
to the number of inputs (i.e., p = m), which agrees with the
fact that the input and flat output dimensions match [1], [2].

Proof. It is straightforward to observe that the systems (1)
and (2), along with the corresponding flat output candidates
(3), (4) and (5) can be written as

S(λ)

[
X(λ)
U(λ)

]
=

[
0

Y (λ)

]
, (8)

3899



using bilateral Laplace and Z-transforms, respectively, with
λ representing the differential, the forward difference and
the backward difference operators, respectively. Thus, X(λ)
and U(λ) can be uniquely determined if and only if
rk(S(λ)) = n + m for all λ ∈ C, i.e., the overall system
(A,B,C, {Di}ri=0) has no invariant zeros.

Moreover, for the rank condition to hold, we must have
p ≥ m and if we assume the absence of redundancy, i.e.,
S(λ) is square, then we have p = m. �

The following corollary can be directly deduced from the
rank condition for S(λ):

Corollary 1. The overall system (A,B,C, {Di}ri ) must be
both controllable and observable. Hence, the system (1) and
(2) must be controllable.

Proof. For differential and forward flatness (λ = λ), note
that the PBH test [9, pp. 135-137] for controllability and
observability are embedded in the rank condition in (7). For
causal/reversible discrete-time systems (i.e., A is invertible),
it can be observed that controllability and observability of
the time-reversed system are necessary for the rank condition
in (7) to hold for backward (causal) difference flat outputs,
and that controllability and observability are equivalent to
reachability and constructibility [8]. �

The necessary and sufficient condition in Theorem 2
provides a means to test if an output is flat (cf. Section V-A)
and to characterize the subspace of flat outputs by requiring
that the system matrix S(λ) has no invariant zeros, i.e., by
enforcing the constraints that the numerators are constants
with all coefficients of multiples of λ being set to zero
(cf. Section VI-A). The characterization of the flat output
subspace also provides a possibility of selecting special flat
outputs such that other tasks such as collision checking
in the trajectory planning application becomes easier or is
not required. This will be discussed in the context of an
application example in Section VI-A.

Next, we construct the expressions for u(t), u[k] ∈ Rm
and x(t), x[k] ∈ Rn as functions of the flat outputs and
their derivatives and forward/backward values, respectively
(cf. Definitions 1, 2 and 3), assuming that the necessary and
sufficient condition in Theorem 2 is satisfied.

Theorem 3. Suppose Theorem 2 holds. Then, the transfer
function matrices λI − A and F (λ) := C(λI − A)−1B +∑r
i=0 λ

iDi have no zeros for all λ ∈ C; and the states X(λ)
and inputs U(λ) can be obtained as functions of Y (λ):

U(λ) = (F (λ))−1Y (λ), (9)

X(λ) = (λI −A)−1BU(λ)

= (λI −A)−1B(F (λ))−1Y (λ); (10)

thus, u(t), u[k] ∈ Rm and x(t), x[k] ∈ Rn can be found via
the inverse of the differential and forward/backward differ-
ence operators (i.e., via inverse Laplace and Z-tranforms) as
functions of only the flat outputs and their derivatives and
forward/backward values, respectively.

Proof. The absence of zeros for the matrices (λI − A) and
F (λ) follows from the following rank equality:

rk

[
A− λI B
C

∑r
i=0 λ

iDi

]
= rk

[
I 0

C(λI −A)−1 I

] [
A− λI B
C

∑r
i=0 λ

iDi

]
= rk

[
A− λI B

0 C(λI −A)−1B +
∑r
i=0 λ

iDi

]
= rk(A− λI) + rk(C(λI −A)−1B +

∑r
i=0 λ

iDi),

since from the above and Theorem 2, rk(A − λI) = n and
rk(F (λ)) = rk(C(λI − A)−1B +

∑r
i=0 λ

iDi) = m, i.e.,
A − λI and F (λ) have full rank for all λ ∈ C such that
rk(S(λ)) = n+m.

Furthermore, from the premultiplication of (8) on both

sides by
[

I 0

C(λI −A)−1 I

]
, it is straightforward to show

that U(λ) and X(λ) can be found as in (9) and (10). Since
we have shown that both (λI − A) and F (λ) have no
zeros, it follows that U(λ) and X(λ) have no poles. Thus,
using the inverse of the differential and forward/backward
difference operators (i.e., inverse Laplace and Z-tranforms),
u(t), u[k] ∈ Rm and x(t), x[k] ∈ Rn are functions of only
the flat outputs and their derivatives and forward/backward
values, as required by the definitions for differential and
difference flatness (cf. Definitions 1, 2 and 3). �

Remark 1. The expressions for U(λ) and X(λ) in (9) and
(10) (cf. Theorem 3) trivially satisfy the conditions for flat
output characterization in [3, Theorem 1].

Moreover, a useful lemma can be found to obtain a
subspace of flat outputs from a known flat output.

Lemma 1. Suppose the output y(t), y[k] ∈ Rm is flat for
some matrices C and {Di}ri=0. Then, for any invertible
matrix, R ∈ Rm×m, the output y′(t), y′[k] with matrices
C ′ := RC and {D′i}ri=0 := {RDi}ri=0 is also flat.

Proof. Since R is invertible, using the following equality:

rk

[
A− λI B
C

∑r
i=0 λ

iDi

]
=rk

[
I 0
0 R

] [
A− λI B
C

∑r
i=0 λ

iDi

]
= rk

[
A− λI B
RC

∑r
i=0 λ

iRDi

]
,

the corollary follows directly since the transformed outputs
satisfy Theorem 2. �

The above lemma has the immediate implication that if
we know one set of flat outputs, then we have obtained a
whole family or subspace of flat outputs (a.k.a. endogenous
transformation in [10]). Moreover, if the set of flat outputs
are positions/configurations, the transformed flat outputs with
any coordinate transformation are also flat outputs since
rotation matrices are invertible and it is straightforward to
see that translation of flat outputs preserves their flatness.

While it well known that an LTI system is flat if and only
if it is controllable [1, Theorem 2], it is useful to characterize
the subspace of flat outputs in the following way:
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Proposition 1 (Existence). If a linear system is controllable,
then there exists a set or family of flat outputs with some
matrices C and {Di}ri=0.

Proof. The existence of flat outputs for controllable systems
can be proven by construction, which will be described in
detail in Section V-B. In addition, a family of flat outputs
also exists by Lemma 1. �

V. COMPUTATIONAL APPROACH FOR FLAT OUTPUT
TEST AND CONSTRUCTION

In this section, we focus on computational methods for
testing if an output is flat, and for construction/finding of
flat outputs for linear controllable systems. In particular, we
leverage existing control system algorithms (e.g., Control
System Toolbox), which are readily available, among oth-
ers, in the MATLABr commercial software package (The
MathWorks Inc., Natick, MA).

A. Flat Output Test
As briefly mentioned in the previous section, the nec-

essary and sufficient condition in Theorem 2 provides
a direct test for an output candidate/guess. For exam-
ple, given a linear system with r = 1 and given
A, B, C, D0 and D1, the differential and forward
difference flatness test can be carried out with MAT-
LAB command [z,nrank]=tzero([A-s*eye(n),B;
C,D0+s*D1]) to test if the system matrix S(λ) given in
(6), with s=tf(’s’)representing λ,

(i) has no invariant zeros (i.e., z= ∅) and
(ii) has full normal rank (i.e., nrank= n+m).

The satisfaction of the two conditions above guarantees that
the output candidate is flat. Otherwise, the output candidate
is not flat. A more concrete example to illustrate the flat

output test is with A =

0 0 1
0 0 0
0 0 0

 and B =

0 0
1 0
0 1

. It can

be verified that with the outputs with C =

[
1 0 0
0 1 0

]
(r = ∅)

or with C =

[
1 0 0
0 1 0

]
, D0 = D1 =

[
1 0
0 0

]
(r = 1) are flat;

but the output with C =

[
1 0 1
0 1 0

]
(r = ∅) is not flat because

there is an invariant zero at z= −1.
On the other hand, to test backward difference flat-

ness for a linear discrete-time system (e.g., with r =
1), we use the MATLAB command [z, nrank]=
tzero([A-1/s*eye(n),B;C,D0+s*D1]) to test if
the above conditions (i) and (ii) are satisfied, from which
the flatness of the output candidate is verified.

B. Flat Output Construction
The fundamental assumption imposed in this section is

that the linear system given by (1) or (2) is controllable (a
necessary condition by Corollary 1). Thus, the system can
be transformed into the control canonical form, which in
general is not unique for multiple-input and multiple-output
(MIMO) systems [11]. Thus, the flat outputs based on these
different forms are also not unique.

A specific differentially and forward difference flat output
can be found in [4, pp. 84–85,157–158], which is based on
the first canonical form given in [11, Eq. (8) and (9)] but no
backward difference flat output was given. In this section, we
provide an alternative flat output using the ‘special’ canonical
form in [11, Eq. (13), (14) and (16)], which transforms the
system into a ‘chain of integrators’ and hence a convenient
system representation for finding flat outputs. In fact, we will
show that with this special canonical form (also considered in
[5]), the differentially, the forward and backward difference
flat outputs can be readily constructed.

Let T be the transformation matrix that transforms the
state vector x(t), x[k] into x̃(t) = T−1x(t), x̃[k] = T−1x[k]
(for details about the construction of the transformation ma-
trix, the reader is referred to [11]). With this transformation,
the transformed state and input matrices, Ã := TAT−1 and
B̃ := TB, have the following structure

[
Ã B̃

]
=



0 1 . . . 0
...

. . .
...

0 0 . . . 1
∗ ∗ . . . ∗ . . . ∗ ∗ . . . ∗
...

...
...

...
. . .

...
...

...
...

0 1 . . . 0
...

. . .
...

0 0 . . . 1
∗ ∗ . . . ∗ . . . ∗ ∗ . . . ∗

0 . . . 0
...

...
0 . . . 0
1 . . . ∗
...

. . .
...
0
...
0

0 . . . 1


, (11)

where the ∗’s in the matrix represent possible nonzero
elements and each nonzero row of B̃ corresponds to the
‘controllability’ index of each chain of integrators which we
denote as γi, i = 1, . . . ,m. An algorithm for the system
transformation into control canonical form described above
is readily available on MATLAB central [12].

The key observation is that the above canonical form read-
ily allows for finding matrices C̃ and {D̃i}ri=0. Rather than
by (tedious) algebraic manipulation, it can be easily verified
by inspection (similar to the single-input and single-output
(SISO) case, see, e.g., [1]) that one specific differentially and
forward difference flat output can be found with

C̃ := CT−1 =

1 0 0 . . . 0
...

...
...

...
...

. . .
...

...
...

...
...

1 0 0 . . . 0

, (12)

i.e., each row of C̃ is of the form
[
0, . . . , 0, 1, 0, . . . , 0

]
with

the ‘1’ in the (1+
∑j−1
i=1 γi)-th position for the j-th row (j =

1, . . . ,m); and {D̃i}ri=0 = {Di}ri=0 = 0 for any finite r.
Then, since strong observability is preserved under similarity
transformation T , which can be observed from the following:

rk

[
Ã− λI B̃

C̃
∑r
i=0 λ

iD̃i

]
= rk

[
T 0
0 I

] [
A− λI B
C

∑r
i=0 λ

iDi

] [
T−1 0

0 I

]
= rk

[
A− λI B
C

∑r
i=0 λ

iDi

]
,
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it follows that C = C̃T and {Di}ri=0 = 0 provides one flat
output for the original linear system (1) and (2). Thus, this
construction approach proves the existence of a flat output
in Proposition 1. Note, however, that in practice, it is easier
to plan a trajectory using the flat outputs in the transformed
coordinates (in control canonical form), as will be discussed
in Section VI-B.

Similarly, it can observed by simple bookkeeping that a
specific backward difference flat output can be obtained with
{D̃i}ri=1 = 0, as well as C̃ and D̃0 given by

[ C̃ D̃0 ] =

 ∗ ∗ . . . ∗ . . . ∗ ∗ . . . ∗...
...

...
...

. . .
...

...
...

...
∗ ∗ . . . ∗ . . . ∗ ∗ . . . ∗

1 . . . ∗
...

. . .
...

0 . . . 1

 , (13)

whose rows (j = 1, . . . ,m) are essentially all (1+
∑j−1
i=1 γi)-

th rows of [ Ã B̃ ]; and in the original states, the backward
difference flat output can be found with C = C̃T and
D0 = D̃0. This systematic approach for obtaining backward
difference flat outputs of controllable linear time-invariant
systems is, to our best knowledge, never been considered.

VI. APPLICATION TO TRAJECTORY PLANNING AND
TRACKING CONTROL

We now show that we can leverage differential and dif-
ference flatness for trajectory planning and tracking control
using an example of a linearized helicopter model given by
ẍ = −bxẋ− gθ, ÿ = −by ẏ + gφ, z̈ = −µż + µwref ,

θ̈ = −2ζθωθ θ̇ − ω2
θθ + ω2

θθref ,

φ̈ = −2ζφωφφ̇− ω2
φφ+ ω2

φφref ,

(14)

with states ~x =
[
x y z ẋ ẏ ż θ θ̇ φ φ̇

]>
and inputs ~u =[

θref φref wref
]>

.
First, we show that a subspace of flat outputs can be

described by some equality and inequality constraints and
how that can be used to select a particular flat output that
may lead to ‘easier’ trajectory planning. Then, we present
design principles for a backward difference flat output based
tracking controller, using the example of a discretized version
of the helicopter model in (14).

A. Subspace of Flat Outputs and Selection
Computer algebra systems such as Mathematica (Wolfram

Research, Inc., Champaign, IL), MATLAB Symbolic Math
Toolbox, etc. can be used to describe a subspace of flat
outputs. Suppose that we seek a subspace of flat outputs

with C =

c11 0 c13 0 c15 0 c17 0 c19 0
c21 0 c23 0 c25 0 c27 0 c29 0
c31 0 c33 0 c35 0 c37 0 c39 0

 and r = ∅.

Using any symbolic math package, we can define each non-
zero element of C, of the matrices A and B corresponding
to the helicopter model (14) and the λ operator as symbols,
and compute X(λ) using (10). By Theorem 3, X(λ) must
not contain poles (such that x(t) can be expressed as a
function of only the flat outputs and their derivatives). Hence,
the characteristic/pole polynomial in λ of X(λ) must be a
non-zero constant, which implies that all coefficients of the
polynomial must be equal to zero. From this observation, a

large family/subspace of flat outputs can be described by all
C matrices as shown above that satisfy:

c13c27c39 − c13c29c37 − c17c23c39 + c17c29c33

+c19c23c37 − c19c27c33 = 0,
−c17c23c39 + c17c29c33 + c19c23c37 − c19c27c33) = 0,
c12c23c37 − c12c27c33 − c13c22c37 + c13c27c32

+c17c22c33 − c17c23c32 + c11c23c39 − c11c29c33

−c13c21c39 + c13c29c31 + c19c21c33 − c19c23c31 = 0,
bx(c12c23c37 − c12c27c33 − c13c22c37 + c13c27c32

+c17c22c33 − c17c23c32) + by(c11c23c39 − c11c29c33

−c13c21c39 + c13c29c31 + c19c21c33 − c19c23c31) = 0,
c11c23c32 − c11c22c33 + c12c21c33 − c12c23c31

−c13c21c32 + c13c22c31 6= 0.

Specifically, it can be verified that c11 = c22 = c33 =
1, c12 = c13 = c17 = c19 = c21 = c23 = c27 = c29 =
c31 = c32 = c37 = c39 = 0 satisfy the above constraints
(and also the flat output test in Section V-A); so do c11 =
cos γ, c13 = sin γ, c22 = 1, c31 = − sin γ, c33 = cos γ, c12 =
c17 = c19 = c21 = c23 = c27 = c29 = c32 = c37 = c39 = 0
for any angle γ. The first set of elements for C corresponds
to the flat outputs being the positions x, y and z and the
second set to the positions in a rotated coordinates axes x′ =
x cos γ + z sin γ, y′ = y and z′ = −x sin γ + z cos γ. This
is not surprising since the rotation matrix for rotating the
coordinate axes is invertible and by Lemma 1, the second
set of flat outputs can be obtained from the first.

This has a good implication on trajectory planning in the
presence of obstacles (in our case a sloped landing site)
because we can now select the flat outputs x′, y′ and z′ with
γ being the slope. With this, no collision checking routine is
needed for x′ and y′, while for z′, a clever choice of basis
functions such that z′(t) does not exceed the final landing
z′(T ) where T is the desired landing time can also lead to a
reduced number of collision checks, resulting in a potential
decrease in computational cost for trajectory planning.

B. Discrete-Time Trajectory Planning and Tracking
For linear continuous-time systems, differentially flat out-

puts have been demonstrated to provide a means for tra-
jectory planning and trajectory tracking (see, e.g., [3], [4]),
where for tracking higher derivatives of the flat outputs
are assumed to be available/measured. On the other hand,
for linear discrete-time systems, the forward difference flat
outputs can only be used for trajectory planning but not
trajectory tracking due to non-causality. However, as we shall
demonstrate, the backward difference flat outputs can be used
for both trajectory planning and tracking, with the latter only
requiring that a finite number of previous/backward values
of the flat outputs is stored in memory.

To the best of our knowledge, trajectory planning and
flatness based tracking control has not been demonstrated
for discrete-time systems. Thus, the following trajectory
planning and tracking control approach using backward
difference flatness is novel. Given that the approach is
computational in nature, this difference flatness based tra-
jectory planning and tracking control is best illustrated with
an example, in which the principles for designing such
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feedback control can be easily understood and applied to
other examples. For this purpose, the system we consider is
an equivalent discretized version of the helicopter model in
(14) assuming zero-order hold (using conversion algorithms
involving matrix exponentials [13], [14]), with bx = 0.05,
by = 0.05, ζθ = 0.2329, ζφ = 0.707, ωθ = 0.5747,
ωφ = 0.6843, µ = 0.4711 and sample time ∆t = 0.1s. To
find the backward difference flat output vector, we apply the
computational approach in Section V-B. The transformation
matrix T can be found from the state transformation proce-
dure in [11], [12] and using (13), C = C̃T and D0 = D̃0

can be computed; hence, one set of flat outputs is given by
y[k] :=

[
y1[k] y2[k] y3[k]

]>
= Cx[k] +D0u[k] where

y1[k] = −3.1366x1[k]− 0.7788x4[k] + 0.8912x7[k]

+ 0.0629x8[k] + u1[k],

y2[k] = 2.2905x2[k] + 0.5674x5[k] + 0.6473x9[k]

+ 0.0441x10[k] + u2[k],

y3[k] = 0.2173x3[k] + 0.0315x6[k] + u3[k].

With these flat outputs, the flatness test in Section V-A can be
used to show that Conditions (i) and (ii) are indeed satisfied.

However, we observed that trajectory planning and track-
ing control procedure is much simpler in the transformed
states, i.e., xd[k] = Tx[k] and yd[k] = C̃xd[k] + D̃0u[k],
and is thus the recommended approach. This is because it
can be easily found (by inspection or by computing (9) and
(10) using computer algebra packages (e.g., Mathematica
and MATLAB Symbolic Math Toolbox) that the transformed
states are simple functions of the flat outputs:

xd,1[k] = yd,1[k − 4], xd,5[k] = yd,2[k − 4],
xd,2[k] = yd,1[k − 3], xd,6[k] = yd,2[k − 3],
xd,3[k] = yd,1[k − 2], xd,7[k] = yd,2[k − 2],
xd,4[k] = yd,1[k − 1], xd,8[k] = yd,2[k − 1],
xd,9[k] = yd,3[k − 2], xd,10[k] = yd,3[k − 1].

(15)

The inputs are also simple functions of the flat outputs since
they can be obtained from u[k] = D̃−1

0 (yd[k] − C̃xd[k]),
where D̃0 is always invertible by construction for linear
controllable systems. In this example, we find
u1[k]= yd,1[k]− 3.9653yd,1[k−1] + 5.8994yd,1[k−2]

−3.9028yd,1[k−3] + 0.9687yd,1[k−4],
u2[k]= yd,2[k]− 3.8983yd,2[k−1] + 5.6999yd,2[k−2]

−3.7048yd,2[k−3] + 0.9032yd,2[k−4],
u3[k]= yd,3[k]− 1.9540yd,3[k−1] + 0.9540yd,3[k−2].

(16)

Next, to plan trajectory that brings the helicopter
from hover to a landing state with non-zero
attitude within a given time T = N∆t, i.e.,
from x[0] = [−5,−8,−18.35, 0, 0, 0, 0, 0, 0, 0]>

to x[N ] = [0, 0, 0, 0, 0, 0, 0, 0,−0.2618, 0]>, or
equivalently in transformed coordinates, xd[0] =
104×[1.5683, 1.5683, 1.5683, 1.5683, −1.8324, −1.8324,
−1.8324,−1.8324,−0.3987,−0.3987]> and xd[N ] =
[0, 0, 0, 0,−54.7504, 4.6754, 5.1253,−53.1067, 0, 0]>,
it suffices to generate a polynomial trajectory for yd[k]
with respect to the time step k subject to the initial
and final state constraints. There are 8 initial and final

conditions corresponding to yd,1[k], yd,2[k] and 4 constraints
corresponding to yd,3[k] which determine the minimal degree
of the interpolating polynomials, as follows:

y∗d,1[k] =
∑7
i=0 ai

(
k+1
N

)i
, y∗d,2[k] =

∑7
i=0 bi

(
k+1
N

)i
,

y∗d,3[k] =
∑3
i=0 ci

(
k+1
N

)i
,

where the coefficients ai, bi and ci are chosen such that the
initial and final condition constraints on y∗d[k] (∗ denotes
the planned reference trajectory) corresponding to (15) are
satisfied. To obtain the minimum landing time subject to
input constraints given by |u1[k]| ≤ 0.4363ρ, |u2[k]| ≤
0.5236ρ and |u3[k]| ≤ 10.1626ρ for all k ∈ [0, N ], where
ρ < 1 is a safety margin (inverse of reserve factor) such
that there remains some control margin for rejecting tracking
error, we perform a line search to find the smallest N
such that the inputs in (16) do not violate their respective
constraints. We choose ρ = 2

3 and the resulting smallest N
is obtained as 147, which corresponds to a landing time of
T = N∆t = 14.7s.

Finally, since the control inputs formulation in (16) is
causal, we can design a difference flatness based tracking
controller as follows:
u1[k] = y∗d,1[k]− 3.9653yd,1[k−1] + 5.8994yd,1[k−2]

−3.9028yd,1[k−3] + 0.9687yd,1[k−4]− α1e1[k−1]
−α2e1[k−2]− α3e1[k−3]− α4e1[k−4],

u2[k] = y∗d,2[k]− 3.8983yd,2[k−1] + 5.6999yd,2[k−2]

−3.7048yd,2[k−3] + 0.9032yd,2[k−4]− β1e2[k−1]
−β2e2[k−2]− β3e2[k−3]− β4e2[k−4],

u3[k] = y∗d,3[k]− 1.9540yd,3[k−1] + 0.9540yd,3[k−2]

−ξ1e3[k−1]− ξ2e3[k−2], (17)
where ej [k] = yd,j [k] − y∗d,j [k] for j = 1, 2, 3 and all k.
Equating the above tracking control law with (16), we obtain

e1[k] +
∑4
i=1 αie1[k−i] = 0, e2[k] +

∑4
i=1 βie2[k−i] = 0,

e3[k] +
∑2
i=1 ξie3[k−i] = 0,

which are error dynamics for each flat output which can be
designed to be stable via pole placement. For this example,
the poles for the 4th order error systems, e1[k] and e2[k],
are first designed in the Laplace-domain as two pairs of
complex poles with the following damping ratios and natural
frequencies: ζ1 = 0.975, ωn,1 = 0.725 and ζ2 = 0.975,
ωn,2 = 0.725 and converted to its Z-domain counterpart
using z = es∆t [15, Section 6.2]. Similarly, for e3[k], we
choose a pair of complex poles with damping ratio ζ = 0.9
and natural frequency ωn = 1.1 in Laplace-domain and
convert the poles to Z-domain. As a result, we obtain α1 =
β1 = −3.6022, α2 = β2 = 4.8700, α3 = β3 = −2.9287,
α4 = β4 = 0.6610, ξ1 = −1.8094 and ξ2 = 0.8204.

Figure 1 shows a comparison of the trajectories of the
helicopter system with perturbed initial conditions that result
from using the nominal inputs (OL), the tracking control law
(CL) and the planned trajectory (Ref), generated with initial
conditions assumed to be known exactly. As expected, we ob-
serve that the open-loop trajectory deviates from the planned
reference trajectory whereas with the tracking control law,
initial condition errors are asymptotically rejected, i.e., the
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planned trajectory is asymptotically tracked, as desired. We
can also observe the tracking control law in action when
compared to the nominal planned inputs in Figure 2.

Remark 2. Flat outputs of a continuous-time linear system
are observed to be no longer flat outputs of its discretized
counterpart although both models are equivalent under the
assumption of zero-order hold for the inputs. Thus, while
differentially flat outputs typically have physical significance,
there is in general no obvious physical interpretation of
difference flat outputs of discretized systems.

VII. CONCLUSION

This paper presented various computational tools for
multiple-input-multiple-output flat linear time-invariant
discrete- and continuous-time systems. We first showed the
equivalence of flatness to the absence of invariant zeros
and thus, an estimation-theoretic system property known as
strong observability. Consequently, a quick test is presented
for ascertaining the flatness of an output candidate and
the subspace of flat outputs is characterized. In addition,
the system transformation into a special control canonical
form can be exploited for finding differentially, forward
difference and backward difference flat outputs. Finally,
we demonstrate, for the first time, the use of backward
difference flatness for trajectory planning and tracking
control of linear time-invariant discrete-time systems.
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Fig. 1: A comparison of the open-loop (OL) trajectory with
nominal inputs, the planned (Ref) trajectory and the closed-
loop (CL) trajectory using the tracking control law in (17);
initial conditions are perturbed by a random vector.

0 5 10 15
−0.5

0

0.5

θ
r
e
f

t(s )

OL/Ref CL

0 5 10 15
−1

0

1

φ
r
e
f

t(s )

0 5 10 15
−20

0

20

w
r
e
f

t(s )

Fig. 2: A comparison of the nominal inputs (OL/Ref) with
the inputs resulting from the tracking control law in (17);
input constraints (with and without safety margin) are also
depicted with red dash-dotted lines.

[15] G.F. Franklin, J.D. Powell, and M.L. Workman. Digital control of
dynamic systems. Addison-Wesley world student series. Addison
Wesley Longman, 1998.

3904


