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Abstract— In this paper, we present recursive algorithms for
linear discrete-time stochastic systems that simultaneously esti-
mate the states and unknown inputs in an unbiased minimum-
variance sense with a delay. By allowing potential delays in state
estimation, the stricter assumptions in a previous work [1] can
be relaxed. Moreover, we show that a system property known
as strong detectability plays a key role in the existence and
stability of the asymptotic estimator with a delay we propose.

I. INTRODUCTION

For linear discrete-time stochastic systems with known
inputs, the Kalman filter optimally extracts information about
a variable of interest from noisy measurements. However,
these inputs that may represent unknown external drivers, in-
strument faults or attack signals are often not accessible. This
problem of simultaneous state and input estimation is found
across many disciplines and applications, from the real-time
estimation of mean areal precipitation during a storm [2] to
input estimation in physiological and transportation systems
[1], [3] to fault detection and diagnosis [4].

Literature review. While state estimation for linear
stochastic systems with unknown inputs have been widely
studied under various assumptions [2], [5]–[7], the problem
of concurrently obtaining minimum-variance unbiased esti-
mates for both the states and the unknown inputs has received
less attention. Initial research was focused on particular
classes of linear systems with unknown inputs [8]–[12], and
more recently, less restrictive estimators of both state and
unknown input have been proposed in [1], [13], [14].

However, these estimators are restricted to estimating the
states and unknown inputs at the same time step (i.e., without
delay) and thus only apply to a limited class of systems.
On the other hand, current results for linear deterministic
systems [15], [16] suggest that state and input estimation is
possible for a broader class of systems if delays are allowed.
Such a filter with a delay for stochastic systems has been
recently proposed in [17], but only for systems without direct
feedthrough and with an emphasis on unbiasedness but not
the optimality of the input estimates.

Contributions. We consider simultaneous input and state
estimation with a delay (i.e., the estimation of inputs and
states up to time step k from the measurements up to time
step k + L for some integer L ≥ 0) with less restrictive
assumptions on the system than currently assumed in the
literature, and hence for a broader class of systems. We
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propose recursive algorithms that are optimal in the unbi-
ased minimum-variance sense for these systems, along with
necessary and sufficient conditions for the existence of stable
estimators. Finally, we relate the stability and existence of
our estimators to strong detectability of the system.

II. PROBLEM STATEMENT

Consider the linear time-invariant discrete-time system
xk+1 = Axk +Buk +Gdk + wk

yk = Cxk +Duk +Hdk + vk
(1)

where xk ∈ Rn is the state vector at time k, uk ∈ Rm is a
known input vector, dk ∈ Rp is an unknown input vector, and
yk ∈ Rl is the measurement vector. The process noise wk ∈
Rn and the measurement noise vk ∈ Rl are assumed to be
mutually uncorrelated, zero-mean, white random signals with
known and bounded covariance matrices, Q = E[wkw

>
k ] � 0

and R = E[vkv
>
k ] � 0, respectively for all k. The matrices A,

B, C, D, G and H are also known. Note that no assumption
is made about H either being the zero matrix (no direct
feedthrough), or having full column rank when there is direct
feedthrough. Without loss of generality, we assume that n ≥
l ≥ 1, l ≥ p ≥ 0 and m ≥ 0, that the current time variable r
is strictly nonnegative, and that x0 is independent of vk and
wk for all k and rk[G> H>] = p, where rk(M) denotes the
rank of matrix M .

Given that filtering and smoothing algorithms are typically
initiated by an initial state estimate (biased or otherwise), it
makes sense to think of an estimator with a delay as an
estimator that can uniquely provide state and input estimates
at all times after a possible initial delay (cf. the notion of
invertibility in Definition 2). In addition, we wish for an esti-
mator whose the state and input estimates are asymptotically
unbiased with more observations. More formally, we define
the desired asymptotic estimator with a delay as follows:

Definition 1 (Asymptotic/Stable Estimation with a Delay).
For any initial state x0 ∈ Rn and sequence of unknown input
{dj}j∈N in Rp, an asymptotic estimator with a delay L

(i) uniquely estimates the state x̂k and the unknown inputs
{di}k−1i=0 for all k from observations of outputs up to
time step k + L, i.e., {yi}k+L

i=0 , and
(ii) provides asymptotically unbiased estimates, i.e., E[x̂k−

xk]→ 0 and E[d̂k−1 − dk−1]→ 0 as k →∞.

The estimator design problem can be stated as follows:
Given a linear discrete-time stochastic system with unknown
inputs (1), design an asymptotic/stable estimator with a
possible delay L (cf. Definition 1) that optimally estimates
system states and unknown inputs in the unbiased minimum-
variance sense.



III. PRELIMINARY MATERIAL

A. Linear System Properties

In this section, we provide definitions of several linear
system properties, which we shall relate to the estimator ex-
istence and stability in Section IV. Without loss of generality,
we assume that wk = 0 and vk = 0 1, and that Bk = Dk = 0
(since uk is known).

Definition 2 (Invertibility2). The system (1) is said to be
invertible if, given the initial state x0, there exists a nonneg-
ative integer L such that the unknown inputs {di}k−1i=0 (and
thus the state xk) can be uniquely recovered from the outputs
up to time step k + L, denoted {yi}k+L

i=0 .

Definition 3 (Strong observability). The system (1) is said to
be strongly observable if there exists a nonnegative integer
L such that x0 can be uniquely recovered from the outputs
up to time step L, denoted {yi}Li=0, for any initial state x0
and any sequence of unknown inputs {di}Li=0. Equivalently,
the system (1) is strongly observable if

yk = 0 ∀ k ≥ 0 implies xk = 0 ∀ k ≥ 0

for any sequence of unknown inputs {di}i∈N.

Definition 4 (Strong detectability). The system (1) is said to
be strongly detectable if

yk = 0 ∀ k ≥ 0 implies xk → 0 as k →∞
for any initial state x0 and input sequence {di}i∈N.

Next, we consider the Rosenbrock system matrix, also
known as the matrix pencil, RS(z) of system (1):

RS(z) :=

[
zI −A −G
C H

]
. (2)

Definition 5 (Invariant Zeros). The invariant zeros z of the
system matrix RS(z) in (2) are defined as the finite values
of z for which the matrix RS(z) drops rank, i.e.,

rk(RS(z)) < nrank(RS),

where nrank(RS) denotes the normal rank (maximum rank
over z ∈ C) of RS(z).

A useful characterization of invertibility, strong observ-
ability and strong detectability based on the invariant zeros
(see, e.g., [1], [20]–[22] for proofs) are as follows:

Theorem 1 (Invertibility [20], [21]). The system (1) is
invertible if and only if rk(RS(z)) = n + p for at least
one z ∈ C.

Theorem 2 (Strong observability [22]). The system (1) is
strongly observable if and only if rk(RS(z)) = n+p,∀z∈C.

Theorem 3 (Strong detectability [1]). The system (1) is
strongly detectable if and only if rk(RS(z)) = n + p,∀z ∈

1The analysis can be extended to the case with non-zero wk and vk by
applying the Gauss-Markov theorem [18, Theorem 3.1.1], and yk and xk

can be replaced by E[yk] and E[xk]. This simplification also provides a
connection to the system properties of deterministic systems.

2Note the slightly different definition compared to [19] in which {di}ki=0

is to be uniquely determined from {yi}k+L
i=0 .

C, |z| ≥ 1.

From the above theorems, we observe that strong ob-
servability implies both invertibility and strong detectability,
while strong detectability implies invertibility, i.e., strong
observability⊂ strong detectability ⊂ invertibility. Moreover,
comparing the above conditions to the PBH test, we observe
that strong observability/detectability implies that (A,C) is
observable/detectable.

B. System Transformation

1) Initial System Transformation: To deal with the poten-
tially rank deficient H , we first carry out a transformation
of the system, as is done in our previous work [1], to
decouple the output equation into two components, one with
a full rank direct feedthrough matrix and the other without
direct feedthrough. Let pH := rk(H). Using singular value
decomposition, we rewrite the matrix H as

H =
[
U1 U2

] [Σ 0
0 0

] [
V >1
V >2

]
(3)

where Σ ∈ RpH×pH is a diagonal matrix of full rank, U1 ∈
Rl×pH , U2 ∈ Rl×(l−pH), V1 ∈ Rp×pH , V2 ∈ Rp×(p−pH), and
U :=

[
U1 U2

]
and V :=

[
V1 V2

]
are unitary matrices. Note

that when H = 0, Σ, U1 and V1 are empty matrices3 while
U2 and V2 are arbitrary unitary matrices. Then, we define
two orthogonal components of the unknown input given by

d1,k = V >1 dk, d2,k = V >2 dk. (4)

Since V is unitary, dk = V1d1,k +V2d2,k and the system (1)
can be rewritten as

xk+1 = Axk +Buk +G1d1,k +G2d2,k + wk (5)
yk = Cxk +Duk +H1d1,k + vk, (6)

where G1 := GV1, G2 := GV2 and H1 := HV1 =
U1Σ. Next, we decouple the output yk using a nonsingular
transformation

T =

[
T1
T2

]
=

[
IpH
−U>1 RU2(U>2 RU2)−1

0 I(l−pH)

] [
U>1
U>2

]
(7)

to obtain z1,k ∈ RpH and z2,k ∈ Rl−pH given by

z1,k = T1yk = C1xk +D1uk + Σd1,k + v1,k
z2,k = T2yk = C2xk +D2uk + v2,k

(8)

where C1 := T1C, C2 := T2C = U>2 C, D1 := T1D, D2 :=
T2D = U>2 D, v1,k := T1vk and v2,k := T2vk = U>2 vk.
This transform is also chosen such that the measurement
noise terms for the decoupled outputs are uncorrelated. The
covariances of v1,k and v2,k are:

R1 := E[v1,kv
>
1,k] = T1RT

>
1 � 0,

R2 := E[v2,kv
>
2,k] = T2RT

>
2 = U>2 RU2 � 0,

R12,(k,i) := E[v1,kv
>
2,i] = T1E[vkv

>
i ]T>2 = 0, ∀k, i.

Since the initial state, process and measurement noise are
assumed to be uncorrelated, it can be verified that v1,k and
v2,k are also uncorrelated with the initial state x0 and process

3We adopt the convention that the inverse of an empty matrix is also an
empty matrix and assume that operations with empty matrices are possible.



noise wk.

2) Further Transformations: As we have seen in [1], that
Σ has full rank enables us to estimate d1,k without delay.
On the other hand, by substituting (5) into (8) to obtain

z2,k= C2Axk−1 + C2Buk−1 + C2G1d1,k−1
+C2G2d2,k−1 +D2uk + v2,k,

we observe that d2,k−1 can be estimated with one-step
delay if I(0) := C2G2 has full column rank, i.e., pI(0) :=
rk(C2G2) = p − pH , which is the origin for the rank
condition that is provided in [1] for the existence of an
MVU filter. We emphasize that this rank condition is not only
sufficient but also necessary for obtaining a state estimate of
xk without delay due to the influence of d2,k−1 on xk in (5).

We now address the question of whether a potential delay
in estimating the state xk from observations {yi}k+L

i=0 for
some integer L ≥ 1 would relax the requirement that C2G2

be full rank. That is, we consider the scenario when pI(0) :=
rk(C2G2) < p−pH . In this case, we again use singular value
decomposition to rewrite the matrix C2G2 as

C2G2 =
[
U3 U4

] [Σ3 0
0 0

] [
V >3
V >4

]
where Σ3 ∈ RpI(0)×pI(0) is a diagonal matrix of full rank,
U3 ∈ R(l−pH)×pI(0) , U4 ∈ R(l−pH)×(l−pH−pI(0) ), V3 ∈
R(p−pH)×pI(0) , V4 ∈ R(p−pH)×(p−pH−pI(0) ), and U (0) :=[
U3 U4

]
and V (0) :=

[
V3 V4

]
are unitary matrices. As

before, if pI(0) = 0, then Σ3, U3 and V3 are empty matrices
and U4 and V4 are arbitrary unitary matrices. We then further
decompose d2,k−1 into two orthogonal components:

d3,k−1 = V >3 d2,k−1, d4,k−1 = V >4 d2,k−1. (9)

Since V (0) is unitary, d2,k−1 can be reconstructed from
d3,k−1 and d4,k−1 using d2,k−1 = V3d3,k−1 + V4d4,k−1.
The system dynamics in (5) can also be rewritten as

xk+1 = Axk+Buk+G1d1,k+G2V3d3,k+G2V4d4,k+wk

= Axk+Buk+G1d1,k+G3d3,k+G4d4,k+wk (10)

where G3 := G2V3 and G4 := G2V4. Next, we again
decouple the output z2,k using a nonsingular transformation

T (0)=

[
T3
T4

]
=

[
IpI(0)

−U>3 R2U4(U>4 R2U4)−1

0 I(l−pH−pI(0) )

][
U>3
U>4

]
(11)

to obtain z3,k ∈ RpI(0) and z4,k ∈ Rl−pH−pI(0) given by

z3,k = T3z2,k = C3xk +D3uk + v3,k
z4,k = T4z2,k = C4xk +D4uk + v4,k

(12)

where C3 := T3C2, C4 := T4C2 = U>4 C2, D3 := T3D2,
D4 := T4D2 = U>4 D2, v3,k := T3v2,k and v4,k := T4v2,k =
U>4 v2,k. With this transform, v3,k and v4,k are uncorrelated,
with covariances given by:

R3 := E[v3,kv
>
3,k] = T3R2T

>
3 � 0,

R4 := E[v4,kv
>
4,k] = T4R2T

>
4 = U>4 R2U4 � 0,

R34,(k,i) := E[v3,kv
>
4,i] = T3E[v2,kv

>
2,i]T

>
4 = 0,∀k, i.

Moreover, v3,k and v4,k are uncorrelated with the initial state
x0 and process noise wk. Next, from (10) and (12), and

simplifying, we have

z3,k = C3Axk−1 + C3Buk−1 + C3G1d1,k−1 + Σ3d3,k−1
+C3wk−1 +D3uk + v3,k

z4,k = C4Axk−1 + C4Buk−1 + C4G1d1,k−1 + C4wk−1
+D4uk + v4,k (13)

Since d1,k−1 can be rewritten from (8) as

d1,k−1 = Σ−1(z1,k−1 − C1xk−1 −D1uk−1 − v1,k−1),

we observe that if Σ3 has full rank, we can uniquely estimate
d3,k−1 (with one-step delay). On the other hand, d4,k−1
cannot be estimated from z3,k or z4,k, but may instead be
estimated with two-step delay, i.e., from

z4,k+1 = C4Axk + C4Buk + C4G1Σ−1(z1,k − C1xk
−D1uk − v1,k) + C4wk +D4uk+1 + v4,k+1

= C4Âxk + C4Buk + C4G1Σ−1(z1,k −D1uk
−v1,k) + C4wk +D4uk+1 + v4,k+1

= C4ÂAxk−1 + C4ÂBuk−1 + C4ÂG1d1,k−1
+C4ÂG3d3,k−1 + C4ÂG4d4,k−1 + C4Âwk−1
+C4Buk + C4G1Σ−1(z1,k −D1uk − v1,k)
+C4wk +D4uk+1 + v4,k+1 (14)

where Â := A − G1Σ−1C1. Thus, we see that if I(1) :=
C4ÂG4 has full column rank, d4,k−1 (and thus d2,k−1) can
be uniquely determined with two-step delay, and the state xk
can be estimated with one-step delay, i.e., L = 1. Otherwise,
further decomposition procedures as above can be repeated
until such a full column rank matrix I(L) is obtained4.

Remark 1. Further decomposition procedures would involve
the repetition of all steps in Section III-B.2. That is, for any
delay L, we recursively use the singular value decomposition

of I(L−1) =
[
U2L+1 U2L+2

] [Σ2L+1 0
0 0

] [
V >2L+1

V >2L+2

]
to fur-

ther decompose d2L,k−1 into d2L+1,k−1 := V >2L+1d2L,k−1
and d2L+2,k−1 := V >2L+2d2L,k−1, as well as z2L,k into
z2L+1,k := T2L+1z2L,k and z2L+2,k := T2L+2z2L,k with[
T>2L+1 T

>
2L+2

]>
= T (L−1), where T (L−1) is obtained

similar to (11). In the process, we recursively define, among
others, C2L+3 := T2L+3C2L+2, C2L+4 := T2L+4C2L+2,
G2L+3 := G2L+2V2L+3 and G2L+4 := G2L+2V2L+4.

It can be shown that the L-delay invertibility matrices form
a sequence {I(L)}LL=0 as follows:

C2G2, C4ÂG4, C6ÂÂ
(1)G6, C8ÂÂ

(1)Â(2)G8,

C10ÂÂ
(1)Â(2)Â(3)G10, . . . , C2L+2ÂÂ

(1) . . . Â(L−1)G2L+2,

. . . , C2L+2ÂÂ
(1) . . . Â(L−1)G2L+2, (15)

where we have defined Â(1) := (I − G3Σ−13 C3)Â and
Â(L) := (I − G2L+1Σ−12L+1C2L+1ÂÂ

(1) . . . Â(L−2))Â(L−1)

for all L = 2, . . . , L − 1. We denote as L the maximum
number of delay steps beyond which input estimation (given
x0) is no longer possible. That is, if, after a delay of L time
steps, dk−1 is not uniquely determined with given xk−1,
then dk−1 and thus xk cannot be uniquely obtained with

4The delay L can be found a priori as the index for the first matrix in
the sequence in (15) with full rank.



any additional delay, i.e., with L > L. We next characterize
a (conservative) upper bound on this maximum delay.

Lemma 1. An upper bound on the maximum delay is given
by L

u
= (n− 1)(p− pH).

Proof. Note that we repeat the process of further decom-
posing d2L,k−1 into d2L+1,k−1 and d2(L+1),k−1 based on
the rank of I(L−1) only if I(L−1) is rank deficient (in-
cluding having zero rank). In the case that I(L−1) has rank
zero, we observe from the above construction of I(L) that
C2L+4 = C2L+2, G2L+4 = G2L+2 and Â(L−1) = Â(L−2).
By the Cayley-Hamilton theorem, if the matrices {I(L)}
corresponding to n − 1 consecutive delays have rank zero,
then any further delay cannot increase the rank of the next
I(L) such that dk−1 and xk can be uniquely determined
given xk−1. Next, if I(L) has nonzero but deficient rank,
the decomposition leads to a reduction of the dimension of
the resulting non-empty d2(L+1),k−1 and thus the number of
columns of I(L) by at least 1. Since we started with p− pH
columns of I(0), this reduction in number of columns can
take place at most p − pH times. Therefore, combining the
two worst case scenarios gives us L

u
= (n−1)(p−pH). �

Remark 2. The ability to uniquely determine the unknown
inputs with a delay given a previous state is equivalent to
the definition of invertibility in Definition 2. Thus, we can
compare the upper bound obtained in Lemma 1 as L

u
=

n(p − pH) − p + pH with the upper bound on the inherent
delay for invertibility systems given in [19] as n− p+ pH .
Thus, L

u
is a more conservative upper bound except when

p = pH or p = pH + 1.

IV. ALGORITHMS FOR SIMULTANEOUS INPUT AND
STATE ESTIMATION WITH A DELAY

A. Existence Condition for Estimation with a Delay

We first visit the question of when an asymptotic estimator
with a delay as defined in Definition 1 exists. The proof of
the following claims will be provided in Section V-B.

Lemma 2 (Unique Estimates with a Delay). Given any
any initial estimate x̂0 (biased or otherwise), the state and
unknown inputs xk and dk−1 can be uniquely estimated for
all k with a delay L if and only if the system (1) is invertible.

Lemma 3 (Asymptotic Unbiasedness). Given any initial
state estimate x̂0 (biased or otherwise), the estimate biases
with a delay L exponentially tend to zero if the pairs
(Ã(L), C̃(L)) and (Ã(L), (Q̃(L))

1
2 ) are detectable and sta-

bilizable, respectively, with Ã(L), C̃(L) and Q̃(L) as defined
below in Remark 3.

Theorem 4 (Existence). An asymptotic estimator with a
delay L (based on Definition 1) exists if:

(i) the system (1) is invertible, and
(ii) the pairs (Ã(L), C̃(L)) and (Ã(L), (Q̃(L))

1
2 ) are de-

tectable and stabilizable, respectively.

Remark 3. We know from [1] that Ã(0) = (I −
G2M̃2C2)Â + G2M̃2C2, C̃(0) = C2 and Q̃(0) = (I −
G2M̃2C2)(G1M1R1M

>
1 G
>
1 +Q)(I−G2M̃2C2)>. For L ≥

1, the matrices Ã(L), C̃(L) and Q̃(L) can be obtained directly
with further decompositions (cf. Remark 1) and with the
procedure outlined in Section V-B. It can be verified that
we obtain a sequence {C̃(L)}LL=0 given by

C2, C4Â, C6ÂÂ
(1), C8ÂÂ

(1)Â(2), C10ÂÂ
(1)Â(2)Â(3),

. . . , C2L+2ÂÂ
(1) . . . Â(L−1), . . . , C2L+2ÂÂ

(1) . . . Â(L−1),

and Ã(L) is of the form of (I −G2L+2M̃2L+2C̃
(L))Â(L) +

G2L+2M̃2L+2C̃
(L), whereas the description of Q̃(L) is much

more involved and hence, for brevity, only additionally
given for L = 1 as Q̃(1) = (I − G4M̃4C4Â)(I −
G3M3C3)(G1M1R1M

>
1 G
>
1 + Q)(I − G3M3C3)>(I −

G4M̃4C4Â)> + (I − G4M̃4C4Â)G3M3R3M
>
3 G
>
3 (I −

G4M̃4C4Â)> + G4M̃4C4QC
>
4 M̃

>
4 G
>
4 , with M2L+1 =

Σ−12L+1 and M̃2L+2 = I(L)†.

B. Estimation Algorithms

As shown in [1], if rk(C2G2) = p − pH , then state
estimates can be obtained without delay (i.e., L = 0). For
the sake of brevity, the reader is referred to [1] for details of
the filter algorithm, its derivation and properties. Notably, the
stability condition for the filter is detectability and stabiliz-
ability of (Ã(0), C̃(0)) and (Ã(0), (Q̃(0))

1
2 ), respectively (as

is given in Remark 3), and strong detectability is a necessary
condition for the existence of a stabilizing solution (i.e.,
convergence of the error covariance to steady-state).

As described in Section III-B.2, if pI(0) := rk(C2G2) <
p − pH but pI(1) := rk(C4ÂG2) = p − pH − pI(0) , then
state estimates can be obtained with one step delay. In this
case, given measurements up to time step k, we consider the
following three-step recursive filter5:

Unknown Input Estimation:
d̂1,k = M1,k(z1,k − C1x̂k|k+1 −D1uk) (16)

d̂3,k−1 = M3,k(z3,k − C3x̂k|k −D3uk) (17)

d̂4,k−1 = M4,k(z4,k+1 −D4uk+1 − C4Âx̂k|k − C4Buk
−C4ÂG3d̂3,k−1 − C4G1Σ−1(z1,k −D1uk)) (18)

d̂k−1 = V1d̂1,k−1 + V2V3d̂3,k−1 + V2V4d̂4,k−1 (19)

Time Update:
x̂k|k =Ax̂k−1|k +Buk−1 +G1d̂1,k−1 (20)

x̂?k|k+1 = x̂k|k +G3d̂3,k−1 +G4d̂4,k−1 (21)

Measurement Update:
x̂k|k+1 = x̂?k|k+1 + L̃k(z4,k+1 − C4Âx̂

?
k|k+1 − C4Buk

−C4G1Σ−1(z1,k −D1uk)−D4uk+1) (22)

where x̂k−1|k, d̂1,k−1, d̂3,k−1, d̂4,k−1 and d̂k−1 denote the
optimal estimates of xk−1, d1,k−1, d3,k−1 , d4,k−1 and dk−1.
The matrices L̃k, M1,k, M3,k and M4,k (with appropriate
dimensions) are filter gains that are chosen to minimize
the state and input error covariances. Note that for the

5To initialize the filter, arbitrary initial values of x̂0|1, Px
0|1 and d̂1,0 can

be used since we will show that the filter is exponentially stable in Theorem
6. If y0 and u0 are available, we can find the minimum variance unbiased
initial estimates given in the initialization of Algorithm 1 using the linear
minimum-variance-unbiased estimator [18].



measurement update in (22), we only used a component
of the measurement given by z4,k+1. There is no loss of
generality in discarding the rest because it can be verified
as in [1] (in which only z2,k is used) that the inclusion of
z1,k+1 and z3,k+1 will result in a biased state estimate.

Algorithm 1 summarizes the filter with delay L = 1.
Similar to ULISE [1] (with L = 0), this filter possesses
some nice properties, given by the following theorems. Its
derivation and proofs will be provided in Section V.

Theorem 5 (Optimality). Let the initial state estimate x̂0|1
be unbiased. If rk(C4ÂG4) = p− pH − pI(0) , then the filter
algorithm given in Algorithm 1 provides the unbiased, best
linear estimate in the mean square sense of the unknown
input and the minimum-variance unbiased estimate of states.

Theorem 6 (Stability). Let rk(C4ÂG4) = p − pH −
pI(0) . Then, that (Ã(1), C̃(1)) is detectable is sufficient for
the boundedness of the error covariance. Furthermore, if
(Ã(1), (Q̃(1))

1
2 ) is stabilizable, the filter is exponentially

stable (i.e., its expected estimate errors decay exponentially).

Furthermore, the following proposition shows that the
invariant zeros of system (1) are the poles of the input and
state filter with delay L = 1, specifically of the state error
dynamics E[x̃?k|k+1] (see proof in Section V-C):

Proposition 1. All invariant zeros of the system (1) are
eigenvalues of the state matrix (Ã(1) − Ã(1)L̃kC̃

(1)) of the
propagated state error dynamics E[x̃?k|k+1].

Proposition 1 has the implication that the invariant zeros
of the system (1) cannot be stabilized by any choice of filter
gain L̃k. Thus, the invariant zeros of the system (1) must
be stable such that the input and state filter algorithm in
Algorithm 1 is stable by Theorem 6. In other words, the
strong detectability of the system 1 is necessary for the
stability of the filter with delay L = 1. Moreover, it is
observed in simulation (cf. Section VI) that the converse of
Proposition 1 does not hold. In that example, there are less
invariant zeros than eigenvalues of (Ã(1) − Ã(1)L̃kC̃

(1)).
For 2 ≤ L ≤ L, we can repeat the decomposition

procedure (cf. Remark 1) and correspondingly construct
asymptotic filtering algorithms as outlined in this section,
provided that the system is invertible. The same optimality
and stability properties as Theorems 5 and 6, as well as
Proposition 1 can be also verified. However, the description
of these cases would require much more notations and hence,
for conciseness, is deferred to a later publication.

Remark 4. Strong detectability of the system (1) is necessary
for a stable filter because strongly undetectable modes of
the system cannot be stabilized by any choice of filter gain
(Proposition 1). Since strong detectability implies invertibil-
ity (Section III-A), and invertibility is necessary and sufficient
for obtaining unique estimates (Lemma 3), we conclude that
strong detectability is a key system property for the existence
of a stable asymptotic estimator (Theorem 4).

Remark 5. Input and state smoothing with a delay L (i.e.,
the estimation of x0:N−L and d0:N−L−1 from the observa-

Algorithm 1 Filtering with a Delay (L = 1)

1: Initialize: P x
0|1 = Px

0 = (C>2 R−1
2 C2)−1 ; x̂0|1 = E[x0] =

P x
0|1C

>
2 R−1

2 (z2,0 − D2u0); Â = A − G1Σ−1C1; Q̂ =

G1Σ−1R1Σ−1G>1 +Q; R4 = C4G1Σ−1R1Σ−1G>1 C
>
4 +R4;

d̂1,0 = Σ−1(z1,0−C1x̂0|1−D1u0); P d
1,0 = Σ−1(C1P

x
0|1C

>
1 +

R1)Σ−1; P xd
1,0 = −P x

0|1C
>
1 Σ−1;

2: for k = 1 to N − 1 do
. Estimation of d3,k−1, d4,k−1 and dk−1

3: x̂k|k = Ax̂k−1|k + Buk−1 + G1d̂1,k−1;
4: d̂3,k−1 = Σ−1

3 (z3,k − C3x̂k|k −D3uk);
5: P̃k = ÂP x

k−1|kÂ
> + Q̂;

6: R̃3,k = C3P̃kC
>
3 + R3;

7: P d
3,k−1 = Σ−1

3 R̃3,kΣ−1
3 ;

8: P xd
3,k−1 = −P x

k−1|kA
>C>3 Σ−1

3 − P xd
1,k−1G

>
1 C
>
3 Σ−1

3 ;
9: P d

13,k−1 = Σ−1C1P
x
k−1|kA

>C>2 Σ−1
3 −P d

1,k−1G
>
1 C
>
3 Σ−1

3 ;
10: R̃4,k =C4ÂP̃kÂ

>C>4 +C4G1Σ−1R1Σ−1G>1 C
>
4 +C4QC>4

+R4 + C4Â(AP xd
3,k−1 + G1P

d
13,k−1 + G3P

d
3,k−1

−QC>3 Σ−1
3 )G>3 Â

>C>4 +(C4Â(AP xd
3,k−1+G1P

d
13,k−1

+G3P
d
3,k−1 −QC>3 Σ−1

3 )G>3 Â
>C>4 )>;

11: P d
4,k−1 = (G>4 Â

>C>4 R̃−1
4,kC4ÂG4)−1;

12: M4,k = P d
4,k−1G

>
4 Â
>C>4 R̃−1

4,k;
13: d̂4,k−1 = M4,k(z4,k+1 − C4Âx̂k|k − C4ÂG3d̂3,,k−1

−C4Buk−D4uk+1−C4G1Σ−1(z1,k−D1uk));
14: P xd

4,k−1 = −(P x
k−1|kA

> + P xd
1,k−1G

>
1 + P xd

3,k−1G
>
3 )

Â>C>4 M>4,k;
15: P d

14,k−1 = −(P xd>
1,k−1A

> + P d
1,k−1G

>
1 + P d

13,k−1G
>
3 )

Â>C>4 M>4,k;
16: P d

34,k−1 = −(P xd>
3,k−1A

> + P d>
13,k−1G

>
1 + P d

3,k−1G
>
3 )

Â>C>4 M>4,k + M3C3QÂC>4 M>4,k;
17: P d

12,k−1 = P d
13,k−1V

>
3 + P d

14,k−1V
>
4 ;

18: P d
2,k−1 =

[
V3 V4

] [ P d
3,k−1 P d

34,k−1

P d>
34,k−1 P d

4,k−1

] [
V >3
V >4

]
;

19: d̂k−1 = V1d̂1,k−1 + V2V3d̂3,k−1 + V2V4d̂4,k−1;

20: P d
k−1 = V

[
P d
1,k−1 P d

12,k−1

P d>
12,k−1 P d

2,k−1

]
V >;

21: P xd
k−1 = P xd

1,k−1V
>
1 + P xd

3,k−1V
>
3 V >2 + P xd

4,k−1V
>
4 V >2 ;

. Time update
22: x̂?

k|k+1 = x̂k|k + G3d̂3,k−1 + G4d̂4,k−1;
23: Rdw

k = −G3Σ−1
3 C3Q−G4M4,kC4Â(I −G3Σ−1

3 C3)Q;

24: P ?x
k|k+1 =

[
A G1 G2

] P x
k−1|k P xd

1,k−1 P xd
2,k−1

P xd>
1k−1 P d

1,k−1 P d
12,k−1

P xd>
2,k−1 P d>

12,k−1 P d
2,k−1

A>G>1
G>2


+Q + Rdw

k + Rdw>
k ;

. Measurement update
25: R̃?

4,k = C4ÂP ?x
k|k+1Â

>C>4 + R4 − C4ÂG4M4,kR4

−R4M
>
4,kG

>
4 Â
>C>4 ;

26: L̃k = (P ?x
k|k+1Â

>C>4 −G4M4,kR4)R̃?−1
4,k ;

27: x̂k|k+1 = x̂?
k|k+1 + L̃k(z4,k+1 − C4Âx̂?

k|k+1 − C4Buk

−C4G1Σ−1z1,k +C4G1Σ−1D1uk−D4uk+1);
28: P x

k|k+1 = (I− L̃kC4Â)P ?x
k|k+1(I− L̃kC4Â)>+ L̃kR4L̃

>
k

−(I − L̃kC4Â)G4M4,kR4L̃
>
k

−L̃kR4M
>
4,kG

>
4 (I − L̃kC4Â)>;

. Estimation of d1,k
29: R̃1,k = C1P

x
k|k+1C

>
1 + R1;

30: P d
1,k = Σ−1R̃1,kΣ−1;

31: d̂1,k = Σ−1(z1,k − C1x̂k|k+1 −D1uk);
32: P xd

1,k = −P x
k|k+1C

>
1 Σ−1;

33: end for

tions in a fixed time interval given by y0:N and u0:N where
L ≤ N − 1) is also possible with the two-pass approach of



[13], with the filter in the previous section (cf. Algorithm 1
for L = 1) as the forward pass. Since the backward pass in
[13] is agnostic to whether the filtered estimates are obtained
with or without delay, the smoothing algorithm remains the
same for all time steps for which filtered estimates can
be obtained with a delay L. Moreover, if follows that the
smoothed estimates are also unbiased and achieve minimum
mean squared error and maximum likelihood [13].

V. ANALYSIS

For the analysis of the results provided in the previous
section, let x̃k|k+1 := xk − x̂k|k+1, x̃?k|k+1 := xk − x̂?k|k+1,
d̃k := dk − d̂k, P x

k|k+1 := E[x̃k|k+1x̃
>
k|k+1], P ?x

k|k+1 :=

E[x̃?k|k+1x̃
?>
k|k+1] and P d

k := E[d̃kd̃
>
k ], as well as d̃i,k :=

di,k − d̂i,k, P d
i,k := E[d̃i,kd̃

>
i,k], P xd

i,k = (P xd
i,k)> :=

E[x̃k|k+1d̃
>
i,k] for i = 1, 2, 3, 4, and P d

ij,k = (P d
ij,k)> :=

E[d̃i,kd̃
>
j,k], for i, j = 1, 2, 3, 4, i < j.

We begin with the derivation of the filter with delay L =
1, which by design maintains the unbiasedness of the filter
and minimizes variance of the estimate errors, thus proving
Theorem 5. Then, we derive the stability conditions for the
filter in Theorem 6 by means of finding an equivalent system
without unknown inputs. Since Lemma 2 is straightforward
to verify and Lemma 3 follows from Theorem 6 for L =
1 and by extension for all L when derived with the same
procedure, Theorem 4 holds. Finally, we prove the claim of
Proposition 1 that the invariant zeros of the system are poles
of the filter regardless of the choice of the filter gain L̃k.

A. Filter Derivation with L = 1 (Proof of Theorem 5)
The following lemma shows the unbiasedness of the state

and unknown input estimates is preserved for all time steps.

Lemma 4. Let x̂0|1 = x̂?0|1 be unbiased, then the estimates,
d̂k−1, x̂?k|k+1 and x̂k|k+1, are unbiased for all k, if and only
if M1,kΣ = I , M3,kΣ3 = I and M4,kC4ÂG4 = I .

Proof. From (8), (13), (14), (16), (17) and (18), we have

d̂1,k = M1,k(C1x̃k|k+1 + Σd1,k + v1,k) (23)

d̂3,k−1 = M3,k(C3(Ax̃k−1|k +G1d̃1,k−1 + wk−1)
+v3,k + Σ3d3,k−1)

(24)

d̂4,k−1 = M4,k(C4Â(Ax̃k−1|k +G1d̃1,k−1
+G3d̃3,k−1 + wk−1)− C4G1Σ−1v1,k
+C4wk + v4,k+1 + C4ÂG4d4,k−1).

(25)

On the other hand, from (20) and (21), the error in the
propagated state estimate can be obtained as:

x̃?k|k+1 = Ax̃k−1|k +G1d̃1,k−1 +G3d̃3,k−1

+G4d̃4,k−1 + wk−1.
(26)

Then, from (14) and (22), the updated state estimate error is

x̃k|k+1 = (I − L̃kC4Â)x̃?k|k+1 − L̃kv4,k, (27)

where v4,k := v4,k − C4G1Σ−1v1,k. It can be easily shown
by induction (hence omitted for brevity) that M1,kΣ = I ,
M3,kΣ3 = I and M4,kC4ÂG4 = I , ∀k are necessary and
sufficient for unbiasedness of d̂k−1, x̂?k|k+1 and x̂k|k+1. �

We continue the proof of Theorem 5 in three subsections,
one for each step of the three-step recursive filter.

1) Unknown Input Estimation: To obtain an optimal esti-
mate of d̂k−1 using (19), we estimate all components of the
unknown input as the best linear unbiased estimates (BLUE).
This means that the expected input estimate is unbiased,
i.e., E[d̂1,k] = d1,k, E[d̂3,k] = d3,k, E[d̂4,k] = d4,k and
E[d̂k] = dk, as was shown in Lemma 4, and that the mean
squared error of the estimate is the lowest possible.

Theorem 7. Suppose x̂0|1 = x̂?0|1 are unbiased. Then (16),
(17) and (18) provide the best linear input estimate (BLUE)
with M1,k, M3,k and M4,k given by

M1,k = Σ−1, M3,k = Σ−13 ,

M4,k = (G>4 Â
>C>4 R̃

−1
4,kC4ÂG4)−1G>4 Â

>C>4 R̃
−1
4,k,

(28)

while the input error covariance matrices are

P d
1,k = Σ−1R̃1,kΣ−1, P d

3,k−1 = Σ−13 R̃3,kΣ−13 ,

P d
4,k−1 = (G>4 Â

>C>4 R̃
−1
4,kC4ÂG4)−1,

(29)

with R̃1,k, R̃3,k and R̃4,k defined in Algorithm 1.

Proof. We wish to choose M1,k, M3,k and M4,k such that
Lemma 4 holds, resulting in input estimate errors given by

d̃1,k = −M1,ke1,k, d̃3,k−1 = −M3,ke3,k,

d̃4,k−1 = −M4,ke4,k,
(30)

where e1,k := C1x̃k|k+1 + v1,k, e3,k := C3(Ax̃k−1|k +

G1d̃1,k−1 + wk−1) + v3,k and e4,k := C4Â(Ax̃k−1|k +

G1d̃1,k−1 +G3d̃3,k−1 + wk−1)− C4G1Σ−1v1,k + v4,k+1.
Then, with R̃i,k := E[ei,ke

>
i,k] for i = 1, 3, 4, we apply

the well known generalized least squares (GLS) estimation
approach (see, e.g., [18, Theorem 3.1.1]) to obtain the
optimal M1,k, M3,k and M4,k given by (28), such that
the estimates have minimum variance, i.e., are best linear
unbiased estimates (BLUE). The corresponding covariance
matrices are

P d
1,k =E[d̃1,kd̃

>
1,k]=Σ−1R̃1,kΣ−1,

P d
3,k−1 =E[d̃3,k−1d̃

>
3,k−1]=Σ−13 R̃3,kΣ−13 ,

P d
4,k−1 = E[d̃4,k−1d̃

>
4,k−1] = (G>4 Â

>C>4 R̃
−1
4,kC4ÂG4)−1.

Next, we note the following equality:

tr(E[d̃kd̃
>
k ]) = tr(P d

1,k) + tr(P d
3,k) + tr(P d

4,k).

Since the unbiased estimates of d̂1,k and d̂3,k−1 are unique
(albeit at different time steps) because Σ and Σ3 are in-
vertible, we have min tr(E[d̃kd̃

>
k ]) = tr(E[d̃1,kd̃

>
1,k]) +

tr(E[d̃3,kd̃
>
3,k]) + min tr(E[d̃4,kd̃

>
4,k]), from which the un-

biased estimate d̂k has minimum variance when d̂1,k, d̂3,k
and d̂4,k have minimum variances. �

2) Time Update: The time update is given by (20) and
(21), and the error in the propagated state estimate by (26)
and its covariance matrix can be computed as

P ?x
k|k =

A>G>1
G>2

>P x
k−1|k P xd

1,k−1 P xd
2,k−1

P xd >
1,k−1 P d

1,k−1 P d
12,k−1

P xd >
2,k−1 P

d >
12,k−1 P d

2,k−1

A>G>1
G>2

+Q+Rdw
k

+Rdw>
k ,

where Rdw
k :=−G4M4,kC4Â(I−G3Σ−13 C3)Q−G3Σ−13 C3Q.



3) Measurement Update: In the measurement update step,
the measurement z4,k+1 is used to update the propagated
estimate of x̂?k|k+1 and P ?x

k|k+1. Next, the covariance matrix
of the updated state error is computed as

P x
k|k+1 = (I − L̃kC4Â)P ?x

k|k+1(I − L̃kC4Â)>

+L̃kR̃4L̃
>
k + (I − L̃kC4Â)G4M4,kR4L̃

>
k

+L̃kR4M
>
4,kG

>
4 (I − L̃kC4Â)>

:= P ?x
k|k + L̃kR̃

?
4,kL̃k − L̃kS

>
k − SkL̃

>
k

(31)

where R4 := E[v4,kv
>
4,k] = C4G1Σ−1R1Σ−1G>1 C

>
4 +

R4, R̃?
4,k := C4ÂP

?x
k|k+1Â

>C>4 + R4 − C4ÂG4M4,kR4 −
R4M

>
4,kG

>
4 ÂC

>
4 and Sk := P ?x

k|k+1Â
>C>4 −G4M4,kR4.

Theorem 8. Suppose x̂0|1 = x̂?0|1 are unbiased. Then, the
minimum-variance unbiased state estimator is obtained with
the gain matrix L̃k given by

L̃k = (P ?x
k|k+1Â

>C>4 −G4M4,kR4)(R̃?
4,k)−1. (32)

Proof. To obtain L̃k, we minimize tr(P x
k|k+1) by using the

conventional method of differential calculus. �

In addition, it can be verified that the (cross-)covariances
P xd
3,k−1, P d

13,k−1, P xd
4,k−1, P d

14,k−1, P d
34,k−1, P xd

2,k−1, P d
2,k−1

and P d
12,k−1 are as given in Algorithm 1.

B. Stability Condition (Proof of Theorem 6)

To obtain the stability condition for the asymptotic filter
with delay L = 1, we begin by finding an equivalent system
without unknown inputs. From (27), we have x̃k|k+1 =

x̃?k|k+1−L̃k(C4Âx̃
?
k|k+1+v4,k). Then, substituting (30) into

(26) and the above equation, and rearranging, we obtain

x̃k|k+1 = A
(1)

k−1x̃k−1|k + w
(1)
k−1 − L̃k(C4ÂA

(1)

k−1x̃k−1|k
+C4Âw

(1)
k + v4,k), (33)

where A
(1)

k−1 = (I − G4M4,kC4Â)Â(1), wk = (I −
G4M4,kC4Â)[(I − G3Σ−13 C3)(G1Σ−1v1,k−1 + wk−1) −
G3Σ−13 v3,k] − G4M4,kC4wk − G4M4,kv4,k and v4,k :=
v4,k − C4G1Σ−1v1,k. Note that the state estimate error
dynamics above is the same for a Kalman filter [23]
for a linear system without unknown inputs: xek+1 =

A
(1)

k xek + w
(1)
k ; yek = C4Âx

e
k + v4,k. Since the objective

for both systems is the same, i.e., to obtain an unbiased
minimum-variance filter, they are equivalent systems from
the perspective of optimal filtering. Furthermore, since the
noise terms of this equivalent system are correlated, i.e.,
E[w

(1)
k v>4,k] = −G4M4,kR4, we further transform the system

into one without correlated noise (see, e.g., [1]): xek+1 =
¯̄A
(1)
k xek + ¯̄u

(1)
k + ¯̄w

(1)
k ; yek = C4Âx

e
k + v4,k, with ¯̄A

(1)
k =

A
(1)

k + G4M4,kC4Â, ¯̄u
(1)
k = −G4M4,ky

e
k is a known input

and ¯̄w
(1)
k = w

(1)
k + G4M4,kv4,k. The noise terms ¯̄w

(1)
k

and v4,k are now uncorrelated with covariances ¯̄Q
(1)
k :=

E[ ¯̄w
(1)
k

¯̄w
(1)>
k ], R4,k and E[ ¯̄w

(1)
k v>4,k] = 0. Finally, if we

substitute M4,k by M̃4,k := (C4ÂG4)†, we obtain the
stability condition given in Lemma 3 from standard results of
the stability of Kalman filtering (see [1] for the justification
of the substitution).

C. Connection between Strong Detectability and Stability
(Proof of Proposition 1)

First, we note that the following identity holds

rk

[
zI −A −G
C H

]
− pH = rk

[
zI − Â −G2

C2 0

]
= rk

[
I 0
−C2 I

] [
zI − Â −G2

C2 0

]
= rk

[
zI − Â −G2

C2Â C2G2

]
= rk

[
I 0
0 T (0)

]zI − Â −G2

C2Â U (0)

[
Σ3 0
0 0

]
V (0)>

[I 0
0 V (0)

]

= rk

I G3Σ−13 0
0 I 0
0 0 I

zI − Â −G3 −G4

C3Â Σ3 0

C4Â 0 0


=rk

zI − Â(1) 0 −G4

C3Â Σ3 0

C4Â 0 0

=rk

[
zI − Â(1) −G4

C4Â 0

]
+ pI(0)

where the first equality is obtained from [1]. Thus, the
invariant zeros of system (1) are all z ∈ C for which the

system matrix R(1)
S (z) :=

[
zI − Â(1) −G4

C4Â 0

]
drops rank.

Let z be any invariant zero of R(1)
S . Then, there exists[

ν> µ>
]> 6= 0 such that R(1)

S (z)
[
ν> µ>

]>
= 0, i.e.,

(zI − Â(1))ν −G4µ = 0, (34)

C4Âν = 0. (35)

Premultiplying (34) with (I − G4M4,kC4Â) and applying
(35) as well as the fact that M4,kC4ÂG4 = I , we have

0 = (I−G4M4,kC4Â)(zI −Â(1))ν+(I−G4M4,kC4Â)G4µ

= (zI − Ã(1))ν = (zI − Ã(1))ν + Ã(1)L̃kC4Âν

= (zI − (Ã(1) − Ã(1)L̃kC4Â))ν.

If ν = 0, then from (34), G4µ = 0, which implies that µ = 0,
which is a contradiction. Hence, ν 6= 0 and the determinant
of zI−(Ã(1)−Ã(1)L̃kC4Â) is zero, i.e., any invariant zero of
the system matrix R(1)

S (z) is also an eigenvalue of the error
dynamics of E[x̃?k|k+1] = (Ã(1) − Ã(1)L̃kC4Â)E[x̃?k−1|k].

VI. ILLUSTRATIVE EXAMPLE

In this example, we consider the state estimation and fault
identification problem when the system dynamics is plagued
by faults, dk, that influence the system dynamics and the
outputs through G and H , as well as zero-mean Gaussian
white noises. Specifically, the linear discrete-time problem
we consider is based on the system given in [1], [7]:

A =


0.5 2 0 0 0
0 0.2 1 0 1
0 0 0.3 0 1
0 0 0 0.7 1
0 0 0 0 0.1

; G =


1 0 0 0
1 0 0 0
1 0 0 0
0 0 0 0
0 0 0 0

; H =


0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

;

B = 05×1; C = I5; D = 05×1;

Q = 10−1


1 0 0 0 0
0 1 0.5 0 0
0 0.5 1 0 0
0 0 0 1 0
0 0 0 0 1

; R = 10−2


1 0 0 0.5 0
0 1 0 0 0.3
0 0 1 0 0

0.5 0 0 1 0
0 0.3 0 0 1

 .
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Fig. 1: Actual states x1, x2, x3, x4, x5, unknown inputs d1,
d2, d3, d4 and their filtered (‘f’) and smoothed (‘s’) estimates.
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Fig. 2: Trace of estimate error covariance of states, tr(P x),
and unknown inputs, tr(P d).

The unknown inputs used in this example are

dk,1 =

{
1, 500 ≤ k ≤ 700
0, otherwise

dk,2 =

{
1

700
(k − 100), 100 ≤ k ≤ 800

0, otherwise

dk,3 =

 3, 500 ≤ k ≤ 549, 600 ≤ k ≤ 649, 700 ≤ k ≤ 749
−3, 550 ≤ k ≤ 599, 650 ≤ k ≤ 699, 750 ≤ k ≤ 799
0, otherwise

dk,4 = 3 sin(0.01k + 3), ∀k.

The invariant zeros of the system matrix RS(z) are
{0.7,−0.7}. Thus, this system is strongly detectable. Since
rk(C2G2) = 0 and rk(C4ÂG4) = 1, the states and unknown
inputs can be estimated with delay L = 1.

We observe from Figure 1 and 2 that the proposed
algorithm is able to estimate the system states and un-
known inputs. For the sake of comparison, we have included
smoothed estimates (cf. Remark 5), which shows a lower
error covariance, as expected. Moreover, with the steady-state
L̃∞ obtained in the simulation, we find the eigenvalues of
(Ã(1)−Ã(1)L̃∞C̃

(1)) to be {0.7,−0.7, 0, 0, 0.0908}. Hence,
as is predicted in Proposition 1, all invariant zeros of the
system are eigenvalues of the filter.

VII. CONCLUSION

We presented recursive algorithms that simultaneously
estimate the states and unknown inputs in an unbiased
minimum-variance sense with a possible delay. The stricter
requirement to ensure estimation without delay is relaxed and
an asymptotic estimator is developed for this broader class of
systems. Notably, strong detectability is identified as a key

system property that dictates the existence and stability of
an input and state estimator with a delay.
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