Resilient State Estimation against Switching Attacks
on Stochastic Cyber-Physical Systems
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Abstract—In this paper, we address the resilient state esti-
mation problem for some relatively unexplored security issues
for cyber-physical systems, namely switching attacks and the
presence of stochastic process and measurement noise signals,
in addition to attacks on actuator and sensor signals. We
model the systems under attack as hidden mode stochastic
switched linear systems with unknown inputs and propose
the use of the multiple model inference algorithm developed
in [1] to tackle these issues. We also furnish the algorithm
with the lacking asymptotic analysis. Moreover, we characterize
fundamental limitations to resilient estimation (e.g., upper
bound on the number of tolerable attacks) and discuss the issue
of attack detection under this framework. Simulation examples
of switching attacks on benchmark and power systems show the
efficacy of our approach to recover unbiased state estimates.

I. INTRODUCTION

Cyber-physical systems (CPS) are systems in which com-
putational and communication elements collaborate to con-
trol physical entities. Such systems include the power grid,
autonomous vehicles, medical devices, etc. Most of these
systems are safety-critical and if compromised or malfunc-
tioning, can cause serious harm to the controlled physical
entities and the people operating or utilizing them. Recent
incidents of attacks on CPS, e.g., the Maroochy water breach,
the StuxNet computer worm and various industrial security
incidents [2], [3], highlight a need for CPS security and for
new designs of resilient estimation and control.

Much of the early research focus has been on the char-
acterization of undetectable attacks and on attack detection
and identification techniques, which range from a simple
application of data time-stamps in a previous work [4] to
hypothesis tests using residuals (e.g., [5]-[8]). However, the
ability to reliably estimate the true system states despite
attacks is just as desirable, if not more than purely attack
detection; thus, this problem has garnered considerable in-
terest in recent years because the availability of resilient state
estimates would, among others, allow for continued operation
with the same controllers as in the case without attacks or
for locational marginal pricing of electricity based on the
real unbiased state information despite attacks.

Literature review. For deterministic linear systems under
actuator and sensor signal attacks (e.g., via data injection [5]-
[7]), the resilient state estimation problem has been mapped
onto an ¢, optimization problem, which is NP-hard [7],
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[9]; thus, a relaxation of the problem to a convex problem
is considered in [9]. A further extension [10] computes a
worst-case bound on the state estimate error in the presence
of additive modeling errors with known bounds, but the
optimization problem remains NP-hard. More importantly,
these approaches do not apply in the presence of additive
stochastic (unbounded) noise signals, which is one of the
security issues we consider in this paper.

In addition, attacks that exploit the switching vulnerability
of CPS or that alter its network topology have been recently
identified as a serious CPS security concern. Some instances
of such vulnerability are attacks on the circuit breakers of a
smart grid [11] or on the logic mode (e.g., failsafe mode) of a
traffic infrastructure [12], on the meter/sensor data network
topology [13] and on the power system network topology
[8]. However, to the best of our knowledge, no resilient state
estimators for dynamic systems have been developed to deal
with this new class of attacks.

Another set of relevant literature pertains to that of
simultaneous input and state estimation (e.g., [14]-[16]).
Of particular importance are the stability and optimality
properties that are investigated in detail in [16], as well
as the relationship between strong detectability and filter
existence that is recently discovered in a related work [17].
Inspired by the multiple model approach (see, e.g., [18], [19]
and references therein), our previous work [1] introduced an
inference algorithm that estimates hidden modes, unknown
inputs and states simultaneously, which we now propose as
the key tool to achieve resilient estimation.

Contributions. In this paper, we propose a resilient state es-
timation algorithm that solves some previously unaddressed
issues in ensuring secure estimation of cyber-physical sys-
tems: (i) switching attacks (attacks of switching mechanisms
altering system- and data-level network topologies and time-
varying attack strategies), and (ii) presence of stochastic
process and measurement noise signals, in addition to the
commonly studied (iii) actuator and sensor signal attacks. We
model cyber-physical systems under attack as hidden mode
stochastic switched linear systems with unknown inputs and
hence, the inference algorithm developed in a previous work
[1] for such systems can be applied for asymptotically recov-
ering unbiased state estimates (i.e., resilient state estimates).
We then study the asymptotic behavior of the approach
in [1] and provide sufficient conditions for asymptotically
achieving convergence to the true model (consistency), or to
the closest model according to some information-theoretic
measure (convergence). In addition, we characterize funda-



mental security limitations to resilient estimation, such as the
upper bound on the number of tolerable attacks, and discuss
the subject of attack detection associated with our approach.

II. MOTIVATING EXAMPLE
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Fig. 1: Example of a three-area power station in a radial
topology (corresponding to node/bus attack).

To motivate the problem of resilient state estimation of
stochastic cyber-physical systems under switching attacks,
we consider a power system [20] with multiple control
areas, each consisting of generators and loads, with tie-lines
providing interconnections between areas (see example of
a 3-area system in Figure 1). A simplified model of the
control areas and the tie-lines is given by (see also parameter
definitions in [20, Chap. 10]):

Control area i: (i € {1,2,..., Nea})
dAw; + D; Aw; _ APmrﬂﬂhi + Zj;éi APZ’?@ _ _APLi
dt ALAP M; AP M‘LAP - M;
'mech; mechy v
dt + TCHi TCHi - O’ (1)
dAP,, + APy, + Aw;  _ APrey, .
dt Tg, rIT Ta,

i i v

Tie-line power flow, Ptllje, between areas 4 and j (no attack):

dAPf,
ais = Tij(Awi — Awj), )
AP/j, = —APg,,

where Aw;, APyccn, and APuv; represent deviations of
the angular frequency, mechanical power and steam-valve
position from their nominal operating values.

A malicious agent is assumed to have access to circuit
breakers that control the tie-lines, and is thus able to sever
the connection between control areas. Depending on the
topology of the tie-line interconnection graph, such attacks
may correspond to a node/vertex/bus attack (disconnection
of a control area from all others) or a link/edge/line attack
(disabling of a specific tie-line between two control areas),
i.e., the power flow across the tie lines is altered:

Attack on circuit breaker ¢ (node/bus attack):

AP, = —APj =0, Vj £i; 3)
Attack on circuit breaker (,7) (link/line attack):
AP, = -APj, =0. “)

In addition, we assume that the system dynamics and
measurements are subject to random noise and attacks via
additive data injection in the actuator and sensor signals. The
goal of resilient state estimation is thus to obtain unbiased
state estimates despite switching attacks, i.e., attacks on
switches/circuit breakers and the switching/time-varying na-
ture of the attack strategy on switches, actuators and sensors.

III. PROBLEM FORMULATION
A. System Description and Attack Modeling

We consider two different classes of possibly time-varying
(switching) attacks on cyber-physical systems (CPS):

Mode Attack: Attacks on the switching mechanism that
changes the system’s mode of operation, or on the
sensor data or interconnection network topology. Exam-
ples: Attack on circuit breakers [11], the power network
topology [8] and the sensor data network [13]; attack
on the logic switch of a traffic infrastructure [12].

Signal Attack: Attacks on actuator and sensor signals of
unknown magnitude and location (i.e., subset of at-
tacked actuators or sensors). Examples: Denial of ser-
vice, deceptive attacks via data injection [5], [7].

Moreover, we allow the system to be perturbed by random
process and measurement noise signals. Thus, we can rep-
resent the above attacks on a noisy dynamic system using a
hidden mode, switched linear discrete-time stochastic system
with unknown inputs governed by:

(Tr1, qr) = (AL o+ B ul +G I dlF+wl*, qr), or € Cy,,
(hy )T = (2, 0% (2)), x) € Dy,

o = Ol aict DIl + HE P o, 5)
where x;, € R™ is the continuous system state and g, € Q =
{1,2,...,71} is the hidden discrete state or mode, which a
malicious attacker has access to. The hidden modes include
the modes of operation that attacked switching mechanisms
(e.g., circuit breakers, relays) operate via access of the jump
set Dy, and the mode transition function 0% (-), or the
possible interconnection network topologies that dictate the
system matrices, AZ" and B,‘i", and the sensor data network
topologies, C}/* and D}*, that an attacker can choose (mode
attack), as well as the different hypotheses about which
actuators and sensors are attacked that determine the true
Gy, and HJ (signal location attack).

For each mode ¢y, uZ’“ € Uy, C R™ is the known input,
d}* € RP the unknown input or attack signal and y € R! the
output, where the corresponding process noise wi* € R™ and
measurement noise vj* € R! are mutually uncorrelated, zero-
mean Gaussian white random signals with known covariance
matrices, Q% = E[w{*w{* '] = 0 and R{* = E[vf* v+ "] -
0, respectively. x( is independent of v} and w}* for all k.

B. Assumptions on System and Attacker

1) System Assumptions: The matrices A}*, Bl*, G},
CP, DJ¥ and H* are known. Moreover, Gi* := G I
and H* H [l for some matrices G% and H%
of appropriate dimensions, where I} and I} are such
that d;"%* I%dy, and dp?% := I}fdy represent the
subvectors of dj representing signal magnitude attacks on
the actuators and sensors, respectively, according to each
hypothesis about the signal attack location, while G% and
H9 provide a means of incorporating information about
the way the attacks affect the system (G?% and H% are
identity matrices if no such prior knowledge is available).
For simplicity and without loss of generality, we assume



that the actuator and sensor signal attacks are distinct and
G G-I 0 .

hence, [HE’“] = [ 0 G qui%] with G¥* ¢ R™*ta,
[% e Riexpa goo g RO [% ¢ REXPF and
pl + pi = p for each model ¢ € O, when there are
t, actuators and ts sensors under signal attacks, and the
maximum total number of attacks is p < p*, where p* is
the maximum number of asymptotically correctable signal
attacks (cf. Theorem 1 for its characterization). We also
require that the system is strongly detectable' in each mode.
In fact, strong detectability is necessary for each mode in
order to asymptotically correct the unknown attack signals
(also necessary for deterministic systems [21, Theorem 6]).
Note also that strongly detectable systems need not be stable
(cf. example in the proof of Theorem 1), but rather that the
strongly undetectable modes of such systems are stable.

2) Attacker Assumptions: We do not constrain the mali-
cious attack signals dj to be a signal of any type (random
or strategic) nor to follow any model, thus no prior ‘useful’
knowledge of the dynamics of dj, is available (uncorrelated
with {dg} for all k& # ¢, {wy} and {v,} for all ¢). The
only assumptions concerning the malicious attacker will be
about the knowledge of (i) the upper bound on the number of
actuators/sensors that can be attacked and (ii) the switching
mechanisms/topologies that may be compromised (hence, the
number of possible modes of operation when under mode
attack), as well as (iii) that the strategy switching frequency
for both mode and signal attacks is limited. Note that the final
assumption is reasonable and realistic if the time a malicious
agent takes to regain access/control is large compared to the
time scale for the convergence of the inference algorithm
and/or when the intention of the malicious agent is to confuse
or avoid detection through intermittent attacks.

C. Problem Statement

The objective of this paper is to develop a resilient state
estimator for system (5), i.e., a state filter that asymptotically
recovers unbiased state estimates of the system irrespective
of the location or magnitude of attacks on its actuators and
sensors as well as switching mechanism/topology attacks,
based on the multiple model approach given in [1]. We
would also like to characterize fundamental limitations to
attack resilience: (i) the maximum number of asymptotically
correctable signal attacks and (ii) the maximum number of
required models with this estimator. Furthermore, we want
to analyze the asymptotic behavior (model identifiability) of
the multiple model inference algorithm proposed in [1] and
study its implication on the optimality of its state and input
estimates, as well as on attack detection.

IV. RESILIENT STATE ESTIMATION

To achieve resilient state estimation against switching at-
tacks in the presence of stochastic process and measurement
noise signals, we note that the system under switching attack

VA linear system is strongly detectable if y;, = 0 Vk > 0 implies z, — 0
as k — oo for all initial states z¢ and input sequences {d;};cn (see [16,
Section 3.2] for necessary and sufficient conditions for this property).

is representable as a hidden mode, switched linear system
with unknown inputs given in (5). Since we do not know
the true model (i.e., the attack strategy corresponding to the
true mode attack and signal location attack), combinations
of possible attack strategies need to be considered, and as
such, the multiple model estimation approach is a natural
choice for solving this problem. Thus, we propose the use
of the multiple model algorithm that we previously designed
for vehicle collision avoidance [1] to solve this problem.
We will begin with a brief summary of the multiple
model inference algorithm in [1]. Then, we characterize
some fundamental limitations to resilient estimation. Finally,
we explore the asymptotic properties of the resilient state
inference algorithm for model identification in Section V.

A. Multiple Model State and Input Filter

We now provide an abbreviated review of the multiple
model approach for simultaneous mode, state and unknown
input estimation given in [1]. Two variants of the multi-
ple model inference algorithm—static and dynamic—were
proposed in that work. The latter provides a possibility of
incorporating prior knowledge about the switching strategy
of the attack. However, we assume no such knowledge
about the malicious agent and will consider only the static
variant (cf. Algorithm 2) in this paper, which consists of two
components: (i) a bank of mode-matched filters, and (ii) a
likelihood-based approach for computing model probability.

1) Mode-Matched Filters: The bank of filters is com-
prised of 91 simultaneous state and input filters, one for each
mode, based on the optimal recursive filter developed in [16]
(with omitted superscript gy, for brevity; cf. Algorithm 1):

Unknown Input Estimation:
A di = M p(210 — Cr kg — D1 gur),
da k-1 = Mo (226 — Copdpjo—1 — Dagur),  (6)
dp—1=Vig_1di -1+ Vo p_1do 1,
Time Update:

Tplk—1= Ak-1Lp—1jk—1 + Br-1uk—1 + G1r-1d1k-1,

. . (7)
Ty = Tgjp—1 + G p—1d2 k-1,
Measurement Update:
Brpe = Epp + Li (226 — Condypy — Dakur), ®)

where ik,”k,l, dl,k_l, (227k_1 and dk_l denote the optimal
estimates of xp_1, di x—1, d2,x—1 and dj_;. Due to space
constraints, the filter derivation along with its notations and
definitions as well as necessary and sufficient conditions
for filter stability and optimality are omitted; the reader is
referred to [16] for a detailed discussion.

2) Mode Probability Computation: To compute the prob-
ability of each mode, the multiple model approach exploits
the whiteness property [1, Theorem 1] of the generalized
innovation sequence, v, defined as

v i= D22k — Co iy, — Dogur) =Tk,  (9)

ie, vy ~ N(0,S;) with covariance S, = Elyr)]] =

I'vR3 k]."; and where I'y, is chosen such that Sy, is invertible



qk 79k T,qk xd,q
k—1|k—1> dl,k—l’ Pk—l\k—l’ Pl,k—l’

[superscript g omitted in the following]

Algorithm 1 Opt-Filter (g, ¢

dk
1 7k 1)

> Estimation of d2x—1 and di—1

Ap—1 = Ap—1 — Grp—1 M k-1C1 k—1;

Qk 1 =G 1My g—1R1 k- 1]\41;C 1G1k 1+ Qr—1;

Py = A 1By k- VAL + Qi

Rzk—czkpkcgk-f—RQk,

Py =(Gg 102kR2kO2kG2k )75

Msy, = Pgy_1G3 51 Ca kR s N

Tpip—1 = Ak—1Zk—1jk—1 + Br-1ur—1 + G r-1d1k-1;

tda k-1 = Mak(22.6 — Cok®rjp—1 — Darur);

dk 1=Vig_1diw—1+ Vo p_1dop— H

1P12k 1= My p-1C1 - 1Pk 1| k— 1A

_Plkz 1G1,k—102,kM2,k’

Pl Pfiz,k—1:| Vi

d k—15

11: P :Vk,l[ L
bt P1d2k1P2,k—1

@Y P N R RN

—_

102 kM2 k

> Time update .
12: i“iw = Tpp—1 + G2 p—1d2,k-1;
13: Py, = Ga2,i—1 M2 1 Ra 1 M3 ,GJ
B +(I — Gg7k,1M27k02,k)Pk(I — Ga g 1Mo Ca) s
14: RS, = C’g,kP,:ﬁcCng + Rop — CoxGop—1Ms p Ro i,
_R2,kM2TkG;,k7102,k;
> Measurement update
15: Ly = ( kaCQk G2,x—1 M3z R2 k)RQ ko
16: g = T + Li(z2,5 — Co KT — Ds, kuk)§
17: Pl = (I — LyCo k)G x—1 M xR, kLk
+LkRs, KMy G g (1 — Ly Cs, k) _
+(I — LiCo o) P (I — LiCa) T + L Row L s
> Estimation of di, 3
18: Rl = C1 kPklkCI kTt Rl k>
19: My = E; ;
20: Pl g = MRy kM
21: dl,k = M k(21,6 — CraZrie — D1rur);

and fi; & 1s given in Algorithm 1. Specifically, the likelihood
function for each mode ¢ at time k conditioned on all prior
measurements Z*~! is obtained as

L(qr|zak) = fop 1201 00 (22,61 2571, qi)

= fVA:IZk’l,Qk:(Vk‘Zk_lvqk) = N(Ug"';QSZ’“).
Then, using Bayes’ rule, the posterior probability for each
mode j can be computed using

(10)

N(Vi;O,Si)Nifl
NSO

(11)

Note that a heuristic lower bound on all mode probabilities
needs to be imposed such that the modes are kept alive in
case of a switch in the strategy of the attacker. Finally, based
on these posterior mode probabilities, the most probable
mode at each time k is determined and thus the associated
state and input estimates and covariances, as follows:

M{c =P(qr = jlz1.k, 20, Z%71) =

A ek ]
Qr= 7" = argmax (i,
~ Y| Y T x,]
Tpp= Ty de = dy Pk\k—PkUc )

Pd Pd,j ) (12)
B. Fundamental Limitations of Attack-Resilient Estimation

1) Number of Asymptotically Correctable Signal Attacks:
More formally, we introduce the following definition:

Definition 1 (Asymptotically/exponentially correctable sig-
nal attacks). We say that p actuators and sensors signal

Algorithm 2 Static-MM-Estimator ( )

11 Initialize Vj € {1,2,...,90}: &) pd; J{YOZ(Zj)_l(ziO
N , py N -
Cf,oa%\o - D{,OUO); P1,({ = (Z(j)) 1(0{ OPO\O]CJO +

R{o)(59) !
2: for k=1to N do
3: for j =1 to 9 do
> Mode-Matched Flltermg
T, d,j .
Run Opt-Filter(j,27 k=10 d1 w1 B2 1|k P

. ) e J J 4%
5: Uy, o= 2y — O Ty — Dj uk;
i pixtoi
. v, R v
o Ll = e (<)
@m0 77 1Ry 1Y
7: end for

8: for j =1 to 91 do
> Mode Probability Update (small ¢ > 0)
o = max{L(j]2] . c);
10: end for
11: for j =1 to 9 do
> Mode Probablhty Update (normalization)

12: Ni = Zm fe )
> Output

13: Compute (12);

14: end for

15: end for

attacks are asymptotically/exponentially correctable, if for
any initial state xo € R" and signal attack sequence {d;}jcn
in RP, we have an estimator such that the estimate bias
asymptotically/exponentially tends to zero, i.e., E[Z—x)] —
0 (and E[czk,l —di-1] = 0) as k — oo.

Remark 1. Note the distinction in the definitions of asymp-
totically/exponentially correctable signal attacks in Defini-
tion 1 and of correctable signal attacks in [9, Definition
1]. Their definition implies finite-time estimation and is
related to strong observability [9]. Due to the new challenges
of further considering stochastic noise signals and mode
switching, we adopt the weaker notion of asymptotic esti-
mation, which only requires a ‘weaker’ condition of strong
detectability (implied by strong observability [16]). This is
mainly for the sake of theoretical analysis. Simulation results
demonstrate that our algorithm is fast enough.

To derive an estimation-theoretic upper bound on the
maximum number of signal attacks that can be asymptot-
ically tolerated, we assume that the true model or mode
(g = =) is known. Thus, the resilient state estimation
problem is identical to the state and input estimation problem
in [16], where the unknown inputs represent the attacks
on the actuator and sensor signals. It has been shown in
[16] that unbiased states (and also unknown inputs) can
be obtained asymptotically (exponentially) if the system
is strongly detectable (cf. [16], [17] for more details, e.g.
regarding filter stability and existence). With this in mind,
the upper bound on the maximum number of signal attacks
that can be asymptotically (exponentially) corrected is:

Theorem 1. The maximum number of asymptotically (ex-
ponentially fast) correctable actuators and sensors signal
attacks, p*, for system (5) is equal to the number of sensors,
l, i.e., p* <1 and the upper bound is achievable.



Proof. A necessary and sufficient condition for strong de-
tectability (with the true model g = *) is given in [16] as
ok [z] — A* -G*
c* H*
Since the above system matrix has only n+1 rows, it follows
that its rank is at most n + [. Thus, from the necessary
condition for (13), we obtain n +p* < n+1 = p* <I. We
show that the upper bound is achievable using the discrete-
time equivalent model (with time step At = 0.1s) of the
smart grid case study in [11], where in both circuit breaker

} =n+p*, VzeC,|z| > 1 (13)

0.9520 0.0936 0
modes, A = [—0.9358 0.8584} and G = 0} If the first
state is measured but compromised (e.g., C = [10] and

H =1 = p* = 1), it can be verified that the system is
strongly detectable, i.e., with two invariant zeros at {0.9945+
0.03115} that are strictly in the unit circle in the complex
plane. Similarly, it can be verified that the unstable sTtem

with matrices A = {1'5 1}@_ [10}’ C - {10 and

0 0.1 00 01

H= 8(1) (i.e., with p* = [) has an invariant zero at {0.1}
and is hence strongly detectable. Thus, in both cases, the
optimal filter in [16], [17] can be applied and unbiased state
estimates can be asymptotically achieved when p* =1[. H

Moreover, the necessity of strong detectability can serve
as a guide to determine which actuators or sensors need to
be safeguarded to guarantee resilient estimation. Since strong
detectability is a system property that is independent of the
filter design, the necessity of this property can be viewed as a
fundamental limitation for resilient estimation, i.e., the ability
to asymptotically/exponentially obtain unbiased estimates.

2) Number of Required Models for Estimation Resilience:
Then, in a similar spirit as the attack set identification ap-
proach of [7], [8] in which a bank of deterministic residuals
are computed to determine the true attack set (but not the
magnitude of the attacks), we consider a bank of filters to
find the most probable model/mode. We now characterize the
maximum number of models 91" that need to be considered
with the multiple model approach in Section IV-A:

Theorem 2. Suppose there are t, actuators and t sensors,
and at most p < [ of these signals are attacked. Suppose also
that there are t,, possible attack modes (mode attack). Then,
the combinatorial number of all possible models, and hence
the maximum number of models that need to be considered
with the multiple model approach, is

m*:th“”S): m( fatts )
p ta+ts_p

Proof. The maximum number of required models is the
number of combinations of p attacks among ¢, + 5 sensors
and actuators for each of the ¢,, attack modes of oper-
ation/topologies. Note that this number is the maximum
because resilience may be achievable with less models: For
instance, when t,,, = 1, t, = O and t, =2 =1, p = 1,

A= [0(')1 012} and C = I, we have 91" = 2, but it can be

verified that with G = 0242 and H = Iy (only one model,
ie., 1 =91 < I*), the system is strongly detectable. [ ]

Remark 2. If N > 1, the multiple model approach requires
that the number of attacks is strictly less than the number of
sensor measurements, i.e., p < l. Otherwise, the generalized
innovation (9) is empty and we have no means of selecting
the ‘best’ model, i.e., of computing mode probabilities.

If more information about the attacks is known, then one
may expect that less models need to be considered. For
instance, if there are at most n, < t, and ns < t, attacks
on the actuators and sensors, respectively, with a total of p
attacks (where p <[ and p < n, + ny), then the maximum
number of models that are required is

=lm me{na’p} ( 7 ) (mm{;g 7 ns})

However, it turns out that more information may also in-
crease the number of models. Nonetheless, with more infor-
mation, the problem with more attacks that was previously
not solvable because the (fewer) models are not strongly
detectable, may now become solvable because although the
number of models is increased, each of these models is
strongly detectable. An example of this is with ¢,, = 1,

A= [0(')1 112L and C' = I. If we assume that n, = 0 and

ng = p = 2, then with G = 0 and H = I (only one model
is required), the system is not strongly detectable with zeros
at {0.1,1.2}. However, if n, =0 and ns =p=1<1=2,

we have 2 models with G = (j, H, = [(1)} and Hy = [j,

:
where both models can be verified to be strongly detectable.

V. ESTIMATOR PROPERTIES
A. Model Identification

We furnish the multiple model algorithms summarized in
Section IV-A with an asymptotic analysis (not given in [1])
and thus its model identification property, which consists
of either model consistency or model convergence, i.e., the
convergence of the mode probability of the true model (if the
true model is in the model set Q) or of the ‘closest’ model (if
the true model is not in the model set, with closeness defined
in some information-theoretic sense), respectively, to 1. Note
that model identifiability is a property of the inference
algorithm in [1] and in resilient state estimation, this property
refers to the ability to asymptotically infer the true attack
strategy (i.e., the true mode attack and signal location attack).
Throughout this section, the true model is assumed fixed in
the time scale of interest given the assumption of limited
strategy switching frequency in the attacker model in Section
III (needed for the sake of analysis).

We first find the ratio of model probabilities from (11):

w . Plae=jlz*) _ N@l0,8Dul MU H N(v):0,5])
mi T Plae=ilZ*) T N(0.Smp =1 N(WOSl)
o LJO k ./V'(l/l OS ) o Mo L

= exp Zz:1 Ve 70, s N = exp Zz 11 f“ (14)
where ZO is the ratio of priors and we have used fé as

a shorthand for f,, 1, ze-1 (22.6lqe = j, Z*~"'). From the



above ratio, we observe that the exponential rate at which
the models are distinguishable depends on the sequence

{ln i } . Thus, in the following, we examine the behavior
of this s&]uence specifically the average behavior of this
sequence (averaged over all possible states) and show that
the posterior model mean probabilities converge to their true
values if the true model is in the set of models. Otherwise,
we show that the multiple model approach converges to the
model that is ‘closest’ to the true model in an information-
theoretic sense (i.e., with the minimum Kullback-Leibler
(KL) divergence [22]) from within the model set. The case
when the sequence is ergodic can also be considered but has
been omitted due to space limitations.

To analyze the average model probability behavior (stud-

ied in part by [23]), we note that the mean of In ;"

by Ey; [In ﬂ —Ey; [n 4| -Ep; [In f,},wherg £ is the

is given

distribution associated with the frue model while E g~ {ln ’fc—’g}
for ¢ € {7, j} coincides with the definition of the Kullback-
Leibler (KL) divergence (denoted D(f;||f)) that is widely
recognized as an important measure of ‘distance’ between
two probability distributions f; and f;! in information theory
[22]. With this, the ratio of the geometric means of model
probabilities (14) can be computed and expressed as:

o onh k [ fi.}
o= % exp) i Epr |In 7

= Sexp Yy (DU = DUZID)-

The KL divergence for each model ¢ € Q of the multiple
model approach in this paper can be computed as:

D(fEIE) =Ey; [n 4]

= 3(Prs — P, ) In2m + fln|R§:2|+ — 3 [RS7|+
T K==k

+3Es; [tr(VZVZ (RZE) )] = 3Ef; [tr(VeVeT(Rz N
= Lpas — pa) 2 + S |RYT - S |Ryg

(R () ~ SR (),
where Rg'Z* = Ey; [PZWZT] and we have used the fact
that (I — CJ,G3, | Mj,) is idempotent such that (I —
C3,GS M) (Ry)T(I - O3 ,GS ,_ My,) = (R§})T
to simplify the above expression. Note that the unknown
inputs of each model need not have the same dimension;
thus p% = rank(R'}) can be different for all ¢ € {QUx}.

. ;

Inspired by the sufficient conditions for systems without

unknown inputs [24], [25], we consider two conditions:

5)

(16)

Condition (i) The true model * is in the set of models,
ie., x € Q and there exists a time step 7" € N such that

f; # [, or equivalently,
1pjaIn2r + 1ln|Rg’e|++ tr(Rg';f*< 24)7)
# 3 3PR; In2m 4 3 ln\R”|+ + 3tr(R 2( 32) )s
forall g € Q,q#* forall £ > T,
Condition (ii) The true model * is not in the model set of

models, i.e., * ¢ Q, but there exist a time step T’ E/N
and a model ¢ € Q such that D(f;||f}) < D(f/|f} ).

or equivalently,
2qu In27 + 5 Lln \Rq |+ + %tr(Rg!Z’*(Rg:z)T)

< 3Py 1n27T + LI |RY | + Ste(RE )N (RY D),
forall ¢ € Q,q' # q forall £ > T.

Condition (i) implies that the likelihood functions for all
other models ¢ # * are not identical to the likelihood
function for the true model ¢ = * for all £ > T. In contrast,
when the true model is not in the set of models, Condition
(ii) implies that there exists a unique model g € Q for all
¢ > T with a likelihood function that is closest to the true
model and the other models are strictly less similar to the
true model, measured in terms of their KL divergences.

Theorem 3 (Mean Consistency). Suppose Condition (i)
holds; then, the multiple model approach is, on average,
consistent, i.e., the model (geometric) mean probability of
the true model converges to 1 (cf. (15)).

Proof. Since D(f;||f}) > 0 with equality if and only if
fi = f# (22, Lemma 3.1]), then with i = * € Q as
the true model and j € Q,j # *, the summand in the
exponent of (15) is always strictly negative, i.e., D(f/|| ;) —
D(fiNf]) = —D(ff1f]) <0 for all £ > T since f; # f}
by assumption. This means that, the ratios of model mean
probabilities of all other models (j € Q,j # *) to the true
model mean probability converge exponentially to zero, i.e.,
the mean probability of the true model converges to 1. W

Note that even if for some ¢ € Q, f/ = f; for all £ € N
(i.e., Condition (i) fails to hold), the posterior model mean
probabilities will be no worse than their prior probabilities.

Theorem 4 (Mean Convergence). Suppose Condition (ii)
holds, i.e., the true model in not the set of models Q, but
there exists a model q € Q with minimum KL divergence;
then, with the multiple model approach, the identified model
converges on average to the closest model in the set of
models, i.e., to the model q € Q.

Proof. Since Condition (ii) holds by assumption, then with
j = ¢ and i = ¢, the summand in the exponent of (15)
is always strictly negative, which result in the exponential
convergence to zero of the ratios of model mean probabilities
of all other models (¢’ € Q,¢" # q) to model q. [ |

B. Optimality of State and Input Estimates

The following corollary characterizes the optimality of the
state and input estimates when using the multiple model
approach with the assumption that the true model is in the
model set, i.e., * € Q. (Otherwise, the state and input
estimates may be biased.)

Corollary 1. If Condition (i) holds, then the state and input
estimates in (12) converge on average to optimal state and
input estimates in the minimum variance unbiased sense.

Proof. For the true model, the filter gains are chosen such
that the error variance is minimized and that the estimates
are unbiased (cf. [16, Section 5] for a detailed derivation and



discussion). Hence, the state and input estimates are optimal
in the minimum variance unbiased sense. If Condition (i)
holds, by Theorem 3, the state and input estimates given by
(12) also converge on average to the state and input estimates
of the true model, which are optimal. [ |

C. Attack Detection

While model consistency is quintessential for establishing
the soundness of the multiple model approach, it may not be
necessary for resilience. For instance, in the trivial case that
there are no attacks d; = O for all k, the state estimates of
all models would perform equally well. In other words, the
attacks need not be detected for obtaining resilient estimates.
Moreover, if the estimator is not mean consistent but the true
mode is in the set of models, then by Theorem 3, there exist
some models with generalized innovations that have identical
probability distributions as the generalized innovation of the
true model (since their KL-divergences are identically zero),
and that are hence Gaussian white sequences [1]. Since this
is an indication that the input and state filters for these modes
are optimal, these attack modes would be undetectable and
better estimates cannot be achieved; thus, we regard our
resilient state estimator as optimal.

VI. SIMULATION EXAMPLES
A. 3-Area Power System (Mode & Signal Magnitude Attacks)

We return to the motivating example in Section II and
consider specifically the discrete-time equivalent (with
a time step At = 0.1s) of a 3-area system in a radial
topology corresponding to a node attack (as depicted
in Figure 1) with D; = 3, Rl = 003, M = 4,
Ten, =5, Ta, = 4, Dy = 0.275, R, = 0.07, Mg = 40,
Tem, = 10, Tg, = 25, D3 = 2, Rf = 0.04, M§ = 35,
Teg, = 20, Tg, = 15, T1o = 2.54, To3 = 1.5 and
T31 = 2.5. We assume that all inputs APy, and APy,
are identically zero and that all states are measured
(ie., C* = I) where only measurements of Aw,; are
corrupted by additive errors d; for ¢ = 1,2,3 (¢, = 0,
ts = 3, p = 3) and the system is affected by additive
zero mean Gaussian white process and measurement
noise signals with known covariances Q = 1072 x
diag(1,1.6,2,1.2,2.5,1.4,0.3,2.11,3,0.2,0.9,1.8) and
R =1072 x diag(2.1,0.6,2.2,0.2,1.9,1.4,1.3,1.1,2.3,1.2,
0.3,1.8). For this tie-line interconnection topology, the
circuit breaker attacks result in 91 = ¢,,, = 5 possible modes
of operation: all switches are safe/“on” (¢ = 1), only circuit
breaker ¢ is attacked/“off” (¢ =i+ 1, ¢« = 1,2,3) and two
or more circuit breakers are attacked/“off” (¢ = 5).

For conciseness, we only show the results for the case
when the attacker is assumed to switch from ¢ = 2 to
g = 5 at t = 500s, although our approach can also be
successfully employed for all possible switching sequences.
We observe from Figure 2 that the resilient state estimation
algorithm is able to estimate the hidden mode, i.e., the
true switching mode. Furthermore, we observe from Figure
3 that the system states (including those from unattacked
measurements; not depicted) and unknown attack magnitudes
are successful estimated, i.e., the signal attacks d; that can

—q=1---¢=2-+-¢q=3 —-q=4 ——q=5
3'5 1=~ ===l (A e
‘3 [}
205 il
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Fig. 2: Mode probabilities for Example VI-A.
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Fig. 3:State and attack magnitude estimates in ExampleVI-A.

be observed to affect the raw measurements of Aw; for
i+ =1, 2,3 have been corrected/removed.

B. Benchmark System (Signal Magnitude & Location Attacks)

In this example, we consider the resilient state estimation
problem for a system (modified from [16]) that has been used
as a benchmark for many state and input filters, with only
one mode of operation (t,, = 1) and with possible attacks
on the actuator and 4 of the 5 sensors (t, = 1, ts = 4):

052 0 0 0 1 10 0 0 0
0021 0 1 0.1 01 —01 0 ©
A=l0 0030 1|[|;B=G=|01[;Cc=|0 0 1 —0502|;
0 0 0071 1 00 0 1 0
L0 0 0 001 0 0025 0 0 1
r1000 10 000 1 00050
0100 010500 0 10003
H=|0010[;Q=10"%*[005 1 00[;R=10"%*0 010 0

0001 00 010 05001 0
10000 00 001 00300 1

The known input uy is 2 for 100 < k& < 300, —2 for
500 < k < 700 and O otherwise, whereas the unknown
inputs are as given in Figure 5. We also assume that there
are at most p = 4 attacks with no constraints on n, and ng;
as a result, we have to consider 91 = 1 (3) = 5 models.

Due to space limitation, we only provide simulation results
for the case when the signal attack locations are switched
from ¢ = 3 (attack on actuator and sensors 1,3,4) to ¢ = 2
(attack on actuator and sensors 1,2,4) at time ¢ = 500s.
From Figure 4, we observe that the mode probabilities
converge to their true values. Figure 5 shows the estimates of
states as well as the unknown attack signal magnitudes. The
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Fig. 5:State and attack magnitude estimates in Example VI-B.

state estimates, which are our main concern, are seen to be
good even before the mode probabilities converge, while the
unknown attack signals are also reasonably well estimated,
with the exception of little jumps in its estimates during the
switch in attack locations at ¢ = 500s. Similar results (not
shown) are obtained for all other attack modes, ¢ = 1 (attack
on actuator and sensors 1,2,3), ¢ = 4 (attack on actuator and
sensors 2,3,4) and ¢ = 5 (attack on sensors 1,2,3,4).
VII. CONCLUSION

We addressed the problem of resilient state estimation for
switching (mode/topology) attacks and attacks on actuator
and sensor signals of stochastic cyber-physical systems. We
first modeled the problem as a hidden mode switched linear
stochastic system with unknown inputs and showed that
the multiple model inference algorithm in [1] is a suitable
solution to these issues and furnished the algorithm with an
asymptotic analysis. Moreover, we provided an achievable
upper bound on the maximum number of asymptotically
correctable signal attacks and also the maximum number of
required models for the multiple model approach. Simulation
examples demonstrated the effectiveness of our approach.

ACKNOWLEDGMENTS

This work was supported by the National Science Founda-
tion, grant #1239182. M. Zhu is partially supported by ARO
WO11NF-13-1-0421 (MURI) and NSF CNS-1505664.

REFERENCES

[1] S.Z. Yong, M. Zhu, and E. Frazzoli. Generalized innovation and infer-
ence algorithms for hidden mode switched linear stochastic systems
with unknown inputs. In IEEE Conference on Decision and Control
(CDC), pages 3388-3394, December 2014.

[2]

[3]
[4]

[5]

[6

=

[8]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

(19]

[20]

[21]

[22]

[23]

[24]

[25]

A.A. Cardenas, S. Amin, and S. Sastry. Research challenges for the
security of control systems. In Proceedings of the 3rd Conference on
Hot Topics in Security, HOTSEC’08, pages 6:1-6:6, 2008.

J.P. Farwell and R. Rohozinski. Stuxnet and the future of cyber war.
Survival, 53(1):23-40, 2011.

M. Zhu and S. Martinez. On distributed constrained formation control
in operator-vehicle adversarial networks. Automatica, 49(12):3571—
3582, 2013.

A.A. Cardenas, S. Amin, and S. Sastry. Secure control: Towards
survivable cyber-physical systems. In International Conference on
Distributed Computing Systems Workshops, pages 495-500, 2008.

Y. Mo and B. Sinopoli. False data injection attacks in control systems.
In Workshop on Secure Control Systems, 2010.

F. Pasqualetti, F. Dorfler, and F. Bullo. Attack detection and identi-
fication in cyber-physical systems. [EEE Transactions on Automatic
Control, 58(11):2715-2729, November 2013.

J. Weimer, S. Kar, and K.H. Johansson. Distributed detection and
isolation of topology attacks in power networks. In Proceedings of the
Ist International Conference on High Confidence Networked Systems,
HiCoNS 12, pages 65-72, New York, NY, USA, 2012. ACM.

H. Fawzi, P. Tabuada, and S. Diggavi. Secure estimation and
control for cyber-physical systems under adversarial attacks. IEEE
Transactions on Automatic Control, 59(6):1454-1467, June 2014.

M. Pajic, J. Weimer, N. Bezzo, P. Tabuada, O. Sokolsky, I. Lee,
and G. Pappas. Robustness of attack-resilient state estimators. In
ACM/IEEE International Conference on Cyber-Physical Systems (IC-
CPS), pages 163-174, April 2014.

S. Liu, S. Mashayekh, D. Kundur, T. Zourntos, and K. Butler-Purry.
A framework for modeling cyber-physical switching attacks in smart
grid. IEEE Transactions on Emerging Topics in Computing, 1(2):273—
285, December 2013.

B. Ghena, W. Beyer, A. Hillaker, J. Pevarnek, and J.A. Halderman.
Green lights forever: Analyzing the security of traffic infrastructure.
In 8th USENIX Workshop on Offensive Technologies, August 2014.
J. Kim and L. Tong. On topology attack of a smart grid: Undetectable
attacks and countermeasures. [EEE Journal on Selected Areas in
Communications, 31(7):1294-1305, July 2013.

S. Gillijns and B. De Moor. Unbiased minimum-variance input
and state estimation for linear discrete-time systems. Automatica,
43(1):111-116, January 2007.

S.Z. Yong, M. Zhu, and E. Frazzoli. Simultaneous input and state
estimation for linear discrete-time stochastic systems with direct
feedthrough. In Conference on Decision and Control (CDC), pages
7034-7039, 2013.

S.Z. Yong, M. Zhu, and E. Frazzoli. A unified filter for simultaneous
input and state estimation of linear discrete-time stochastic systems.
Automatica, 2015. Provisionally accepted. Available from: http:
//arxiv.org/abs/1309.6627.

S.Z. Yong, M. Zhu, and E. Frazzoli. On strong detectability and
simultaneous input and state estimation with a delay. In IEEE
Conference on Decision and Control (CDC), 2015. To appear.

Y. Bar-Shalom, T. Kirubarajan, and X.-R. Li.  Estimation with
Applications to Tracking and Navigation. John Wiley & Sons, Inc.,
New York, NY, USA, 2002.

E. Mazor, A. Averbuch, Y. Bar-Shalom, and J. Dayan. Interacting
multiple model methods in target tracking: a survey. IEEE Transac-
tions on Aerospace and Electronic Systems, 34(1):103-123, January
1998.

A.J. Wood, B.F. Wollenberg, and G.B. Sheble.
operation, and control. John Wiley & Sons, 2013.
S. Sundaram and C.N. Hadjicostis. Delayed observers for linear
systems with unknown inputs. [EEE Transactions on Automatic
Control,, 52(2):334-339, February 2007.

S. Kullback and R.A. Leibler. On information and sufficiency. Annals
of Mathematical Statistics, 22:49-86, 1951.

Z. Zhao and X.R. Li. The behavior of model probability in multiple
model algorithms. In 8th International Conference on Information
Fusion, volume 1, pages 331-336, July 2005.

Y. Baram and N.R. Sandell. An information theoretic approach to
dynamical systems modeling and identification. [EEE Transactions
on Automatic Control, 23(1):61-66, February 1978.

Y. Baram and N.R. Sandell. Consistent estimation on finite parameter
sets with application to linear systems identification. IEEE Transac-
tions on Automatic Control, 23(3):451-454, June 1978.

Power generation,



