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Abstract— In this paper, we present filtering algorithms for
simultaneous input and state estimation of linear discrete-
time stochastic systems when the unknown inputs are partially
known, i.e., when some aggregate information of the unknown
inputs is available as linear equality or inequality constraints.
The stability and optimality properties of the filters are
presented and proven using two complementary perspectives.
Specifically, we confirm the intuition that the partial input
information improves the performance of the filters when a
linear input equality constraint is given. On the other hand,
given a linear inequality constraint, we show that the estimate
error covariance is decreased but the estimates may be biased.

I. INTRODUCTION

The estimation problem for stochastic systems with un-
known inputs has applications found across a wide range
of disciplines. The unknown disturbance inputs often cannot
be modeled by a zero-mean, Gaussian white noise, but
are typically not completely unknown, as they may satisfy
conservation laws [1] or are bounded by physical laws. For
instance, autonomous vehicles do not have knowledge of
the control inputs of other vehicles [2] but these inputs are
limited by the maximum engine power. Other application
examples include real-time estimation of mean areal precip-
itation during a storm [3], fault detection and diagnosis [4]
as well as population and traffic estimation [1], [5], [6].

Literature review. In the extreme scenario where all inputs
are observed, the seminal Kalman filter produces statistically
optimal estimates of the underlying system states. For the
other extreme where the inputs are completely unknown,
numerous filters have been recently developed that find
minimum-variance unbiased (MVU) estimates of the states
only (see, e.g., [3], [7], [8]) or that simultaneously obtain
MVU estimates of both states and inputs (see, e.g., [9]–[12]).

Relatively few filters have been developed for the case
when the inputs are partially known, although this is a known
problem for a long time. Initial research has assumed that
these unknown inputs are fixed biases [13] or have known
dynamics [5], [14]. More recently, the unknown inputs are
assumed to be known at an aggregate level [1], [15] (with
equality), which was shown to be suitable for describing
conservation laws in a traffic study [6] and aggregated
statistics of a population estimation study [5]. However, the
proposed filters in [1], [15] assume that the system has
no direct feedthrough and only estimate states, although
the problem of estimating the partially known inputs is
often as important as state estimation. On another hand,
to our best knowledge, no filters have been developed for
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the scenario when the aggregate input is known to satisfy a
linear inequality, which, for instance, is the case when the
unknown inputs are known to be bounded below (e.g., non-
negative) or above (e.g., bounded L1- and L∞-norms). Thus,
the problem of simultaneously estimating states and inputs
in an unbiased minimum-variance manner for systems with
linear input aggregate information and without restrictions
on the direct feedthrough matrix remains open.

A related set of relevant literature pertains to constrained
state estimation, i.e., Kalman filtering with linear or in-
equality constraints [16], [17]. Of particular interest to the
filter development in this paper is the projection method,
which exhibits several desirable properties and for which the
constrained estimation problem can be either solved in closed
form or with a quadratic program.

Contribution. We introduce filtering algorithms for si-
multaneously estimating both states and unknown inputs
when input aggregate information is available in the form
of linear equality and inequality constraints. With the input
aggregate equality constraint, we can transform the problem
via a substitution method into an equivalent problem with no
constraints. Hence, the nice properties of the input and state
filter developed in an earlier work [12] directly apply, e.g.,
optimality in a minimum variance unbiased sense, stability
and convergence to steady-state. Furthermore, via a “detour”
of using a projection method [16] that projects the uncon-
strained input estimates onto the constraint manifold, we can
further show that with the input aggregate information, the
mean-squared error of the estimates is decreased.

In contrast, when the input aggregate information is given
in the form of a linear inequality, we use the projection
method to project the unconstrained input estimates onto
the polyhedron described by the linear constraints instead.
We show that the error covariance of the input estimates is
decreased, but the estimates may become biased, although
the bias is imperceptible in our simulation examples.

Notation. Rn denotes the n-dimensional Euclidean space
and C the field of complex numbers. For a vector, v ∈ Rn,
the expectation and L1-, L2- and L∞-norms are denoted by
E[v], ‖v‖1, ‖v‖2 and ‖v‖∞. The transpose, inverse, Moore-
Penrose pseudoinverse, trace and rank of M ∈ Rp×q are
M>, M−1, M†, tr(M) and rk(M). For a symmetric matrix
S, S � 0 (S � 0) indicates S is positive (semi-)definite.

II. PROBLEM STATEMENT AND MOTIVATION

Consider the linear time-varying discrete-time system
xk+1 = Akxk +Bkuk +Gkdk + wk
yk = Ckxk +Dkuk +Hkdk + vk

(1)

where xk ∈ Rn is the state vector at time k, uk ∈ Rm is
a known input vector, dk ∈ Rp is an unknown input vector,



and yk ∈ Rl is the measurement vector. The process noise
wk ∈ Rn and the measurement noise vk ∈ Rl are assumed to
be mutually uncorrelated, zero-mean, white random signals
with known covariance matrices, Qk = E[wkw

>
k ] � 0 and

Rk = E[vkv
>
k ] � 0, respectively. Without loss of generality,

we assume that n ≥ l ≥ 1, l ≥ p ≥ 0 and m ≥ 0, and
that the current time variable r is strictly nonnegative. x0

is assumed to be independent of vk and wk for all k. The
matrices Ak, Bk, Ck, Dk, Gk and Hk are known, and no
assumption about the rank of Hk is made. We also assume
that maxk(rk[G>k H>k ]) = p (otherwise, we can retain the
linearly independent columns and the “remaining” inputs still
affect the system in the same way).

In our previous work [11], [12], we assumed that dk for
all k is completely unknown. In this paper, we consider the
case when partial input information is available, i.e., we are
given input aggregate information in these linear forms:

1) Linear equality constraint:
Rkdk = ρk, (2)

where ρk ∈ Rrk and Rk ∈ Rrk×p are deterministic
and known. Furthermore, we assume that Rk has full
row rank, i.e., rank(Rk) = rk and rk ≤ p (otherwise,
redundant constraints can be removed). This form of
aggregate information is found in various contexts (cf.
[1]) such as conservation laws, known weighted aver-
ages, aggregated statistics, etc. Some concrete exam-
ples are when net migration arrivals (input variables)
are only known at a national (aggregated) level in
the estimation problem of Australian state populations
[5] or when the net gain of lane-changing vehicles
(unknown inputs) aggregated across all the lanes is
equal to zero in a traffic densities study [6].

2) Linear inequality constraint:
Rkdk ≤ ρk, (3)

where ρk ∈ Rrk and Rk ∈ Rrk×p are deterministic
and known (rk is generally greater than p). This
partial information form allows for the incorporation of
input bounds (including L1-norm and L∞-norm) since
unknown disturbance inputs in most practical problems
are bounded. For instance, the unknown inputs of
other drivers [2] are bounded by the vehicles’ engine
power, whereas the fault signals in fault detection and
diagnosis [4] are oftentimes bounded. In the context
of data/signal injection attacks [18], [19] in cyber-
physical systems, it may be reasonable to assume that
the attacker has limited resources.

The estimator design problem can thus be stated as:
Given a linear discrete-time stochastic system (1) with input
aggregate information as a linear equality constraint (2)
and/or a linear inequality constraint (3), design an optimal
and stable filter that simultaneously estimates system states
and unknown inputs.

III. FILTERING WITH PARTIAL INPUT INFORMATION

Having motivated the problem at hand, we now proceed to
present filtering algorithms for the case when input aggregate
information is available, either as an equality or an inequality
constraint. For the scenario when input equality information

Algorithm 1 ULISE algorithm (for unconstrained/equality
constrained unknown inputs)

1: Initialize: P x0|0 = Px0 = (C>2,0R
−1
2,0C2,0)−1 ; x̂0|0 = E[x0] =

P x0|0C
>
2,0R

−1
2,0(z2,0−D2,0u0); Â0 = A0−G1,0Σ−1

0 C1,0; Q̂0 =

G1,0Σ−1
0 R1,0Σ−1

0 G>1,0 + Q0; d̂1,0 = Σ−1
0 (z1,0 − C1,0x̂0|0 −

D1,0u0); P d1,0 = Σ−1
0 (C1,0P

x
0|0C

>
1,0 +R1,0)Σ−1

0 ;
2: for k = 1 to N do
. Estimation of d2,k−1 and dk−1

3: Âk−1 = Ak−1 −G1,k−1M1,k−1C1,k−1;
4: Q̂k−1 = G1,k−1M1,k−1R1,k−1M

>
1,k−1G

>
1,k−1 +Qk−1;

5: P̃k = Âk−1P
x
k−1|k−1Â

>
k−1 + Q̂k−1;

6: R̃2,k = C2,kP̃kC
>
2,k +R2,k;

7: P d2,k−1 = (G>2,k−1C
>
2,kR̃

−1
2,kC2,kG2,k−1)−1;

8: M2,k = P d2,k−1G
>
2,k−1C

>
2,kR̃

−1
2,k;

9: x̂k|k−1 = Ak−1x̂k−1|k−1 +Bk−1uk−1 +G1,k−1d̂
u
1,k−1;

10: d̂2,k−1 = M2,k(z2,k − C2,kx̂k|k−1 −D2,kuk);
11: d̂k−1 = V1,k−1d̂1,k−1 + V2,k−1d̂2,k−1;
12: P d12,k−1 = M1,k−1C1,k−1P

x
k−1|k−1A

>
k−1C

>
2,kM

>
2,k

−P d1,k−1G
>
1,k−1C

>
2,kM

>
2,k;

13: P dk−1 = Vk−1

[
P d1,k−1 P d12,k−1

P d>12,k−1 P d2,k−1

]
V >k−1;

. Time update
14: x̂?k|k = x̂k|k−1 +G2,k−1d̂2,k−1;
15: P ?xk|k = G2,k−1M2,kR2,kM

>
2,kG

>
2,k

+(I −G2,k−1M2,kC2,k)P̃k(I −G2,k−1M2,kC2,k)>;
16: R̃?2,k = C2,kP

?x
k|kC

>
2,k +R2,k − C2,kG2,k−1M2,kR2,k

−R2,kM
>
2,kG

>
2,k−1C2,k;

. Measurement update
17: L̃k = (P ?xk|kC

>
2,k −G2,k−1M2,kR2,k)R̃?†2,k;

18: x̂k|k = x̂?k|k + L̃k(z2,k − C2,kx̂
?
k|k −D2,kuk);

19: P xk|k = (I − L̃kC2,k)G2,k−1M2,kR2,kL̃
>
k

+L̃kR2,kM
>
2,kG

>
2,k−1(I − L̃kC2,k)>

+(I − L̃kC2,k)P ?xk|k(I − L̃kC2,k)>+ L̃kR2,kL̃
>
k ;

. Estimation of d1,k
20: R̃1,k = C1,kP

x
k|kC

>
1,k +R1,k; M1,k = Σ−1

k ;
21: P d1,k = M1,kR̃1,kM1,k;
22: d̂1,k = M1,k(z1,k − C1,kx̂k|k −D1,kuk);
23: end for

(2) is accessible, we consider two equivalent views of the
input aggregate information: (i) as information that can be
included or substituted into the system equations, or (ii)
as a constraint that the input estimate needs to satisfy and
also a manifold onto which the estimate can be projected.
Fortunately, these two complementary perspectives provide
the possibility to study different properties of the filter. Note,
however, that the second perspective is solely given for
analysis purposes, for reasons that we shall provide at the
end of Section III-A.

In addition, taking the perspective of input inequality in-
formation (3) as a constraint provides a means to project the
input estimates onto the polyhedron described by the linear
constraints. However, less can be said about the optimality
of the filter in this case. The error covariance of the input
estimates decreases with the projection, but the estimate
may be biased (though imperceptible in simulations); thus,
improvements of the filter remain a subject of future work.

In the following, we denote the error covariances of the
constrained (i.e., with input aggregate information) propa-
gated and updated state estimates as P ?xk|k := Cov(x̃?k|k) and



P xk|k := Cov(x̃k|k), the error covariances of the constrained
input estimate as P dk−1 := Cov(d̃k−1), and the unconstrained
input estimate (i.e., when ignoring the input aggregate infor-
mation) as P d,uk−1 := Cov(d̃uk−1).

A. Filtering with Input Aggregate Equality Information
1) Input Equality as Information (via substitution): View-

ing the given input aggregate equality (2) as information,
we incorporate this partial information via substitution into
(1). Note that if rk < p, there exists an infinite number of
solutions to (2). Thus, we first obtain all solutions to (2) as
dk = R†kρk + (I −R†kRk)d̆k = R†kρk + U1,kΞkδk, (4)

where the latter term represents all possible signals in the null
space of Rk and we denote with R†k := R>k (RkR

>
k )−1 the

Moore-Penrose pseudoinverse of Rk. We have also carried
out a singular value decomposition of the matrix I −R†kRk

I −R†kRk :=
[
U1,k U2,k

] [Ξk 0
0 0

] [
V>1,k
V>2,k

]
= U1,kΞkV

>
1,k,

and defined δk := V>1,kd̆k ∈ Rp̆k with p̆k = p − rk. It can
be verified that (4) satisfies (2) for all d̆k ∈ Rm.

Then, substituting (4) into the original system (1) and
rearranging, we obtain an equivalent system given by

xk+1 = Akxk +B′ku
′
k +G′kδk + wk

yk = Ckxk +D′ku
′
k +H ′kδk + vk

(5)

where B′k :=
[
Bk GkR

†
k

]
, D′k :=

[
Dk HkR

†
k

]
, G′k :=

GkU1,kΞk, H ′k := HkU1,kΞk and u′k =
[
u>k ρ>k

]>
,

which has the exact form as (1) except with matrices
(Ak, B

′
k, Ck, D

′
k, G

′
k, H

′
k) and with the noise statistics, Qk

and Rk, remaining unchanged. Thus, the ULISE algorithm
(cf. Algorithm 1) can be directly applied and by extension,
all the nice properties of ULISE such as (i) optimality in the
unbiased and minimum variance sense, (ii) the global opti-
mality over the class of all linear state and input estimators,
and (iii) stability guarantees and convergence to steady-state
(for LTI systems) also hold for the input equality constrained
problem. For the sake of brevity, the reader is referred to
[12] for proofs and a detailed discussion. Note that some
components of δk may only be estimated with a delay [12],
[20], which implies that some components of dk may only
be estimated with a delay too.

As discussed in [12], [20], strong detectability is a key
property for the existence and stability of a simultaneous
input and state filter for linear time-invariant systems. Nat-
urally, we would expect that the strong detectability of
the original system without input aggregate information (1)
would imply that the equivalent system with partial input
information (5) is also strongly detectable, whereas the con-
verse may not be true. Thus, the next proposition formalizes
the conditions for strong detectability of the equivalent linear
time-invariant system with input aggregate information (5),
and provides a proof that confirms the intuition.

Proposition 1 (Strong detectability (time-invariant)). Given
an input aggregate equality constraint (2), the equivalent
system (5) is strongly detectability if and only if

rk

[
zI −A −G
C H

] [
I 0
0 U1

]
= n+ p̆, ∀z ∈ C, |z| ≥ 1, (6)

where p̆ := p−rk(R) =: p−r. Moreover, strong detectability
of the original LTI system (1) (without input equality infor-
mation) given by

rk

[
zI −A −G
C H

]
= n+ p ∀z ∈ C, |z| ≥ 1, (7)

is sufficient but not necessary for the strong detectability
condition in (6).

Proof. From the necessary and sufficient condition for the
LTI system (A,B′, C,D′, G′, H ′) given in [12], we have

rk

[
zI −A −GU1Ξ
C HU1Ξ

]
= rk

[
zI −A −G
C H

] [
I 0
0 U1

] [
I 0
0 Ξ

]
= rk

[
zI −A −G
C H

] [
I 0
0 U1

]
= n+ p̆, ∀z ∈ C, |z| ≥ 1,

where we used the fact that Ξ is invertible. Next, if (7) holds,

then rk

[
zI −A −GU1Ξ
C HU1Ξ

]
= rk

[
I 0
0 U1

]
= n + p̆, i.e., (7)

implies (6). The reverse is not necessarily true, as is shown

with the following unstable LTI system A =

[
0.1 1
0 1.5

]
,

G =

[
1 0
0 1

]
, C =

[
1 0
0 1

]
and H =

[
0 0
0 1

]
, in which (7)

does not hold because of an invariant zero at {1.5} but with
input aggregate information (2) with R =

[
1 1
]
, the strong

detectability condition (6) holds. �

2) Input Equality as Constraint (via projection): If we
view the input aggregate information as a constraint, we
can further prove that the estimates have better perfor-
mance (smaller mean-squared errors in the estimates of
states and inputs) than without the constraint (similar to
state-constrained Kalman filtering [16]), in addition to the
properties that are carried over from the properties of ULISE
as previously discussed in Section III-A.1. To achieve this,
we first show that a commonly employed projection method
in [16] leads to estimates in the linear form, which have the
desired properties. Then, from the global optimality of the
ULISE algorithm over the class of linear estimators [12], we
argue that the estimates computed via substitution in Section
III-A.1 also have the same properties.

The projection method in [16] is useful for projecting the
unconstrained input estimates d̂uk onto the constraint surface.
Thus, to obtain constrained input estimates, we solve the
problem given by
d̂k := arg min

δ
(δ − d̂uk)>Wk(δ − d̂uk) s.t. Rkδ = ρk (8)

where Wk is any symmetric positive definite weighting
matrix (which we shall see is “optimal” when Wk =
(P d,uk )−1). This constrained optimization problem can be
solved analytically, yielding

d̂k = d̂uk − J̃k(Rkd̂
u
k − ρk), (9)

where J̃k := W−1
k R>k (RkW−1

k R>k )−1. Moreover, we can
find the input estimate error, d̃k := dk − d̂k, from (9) as

d̃k = dk − d̂uk + J̃k(Rkd̂
u
k − ρk −Rkdk + Rkdk)

= (I − Jk)d̃uk + J̃k(Rkdk − ρk), (10)

where d̃uk := dk−d̂uk and Jk := J̃kRk. Note that in this input
equality case, Rkdk − ρk = 0, which further simplifies (10)
to d̃k = (I−Jk)d̃uk , and this is the crux for the derivation of



estimate properties, which we state in the following without
proof (interested readers are referred to [16, Theorems 1–3]).

Proposition 2. Let the initial state estimate x̂0|0 be unbiased.
Then the input estimate is unbiased, i.e., E[d̂k−1−dk−1] = 0.

Proposition 3. The constrained input estimate d̂k as given
by (9) with W∗k = (P d,uk )−1 has a smaller error covariance
than the unconstrained input estimate d̂uk , i.e., P dk � P

d,u
k .

Proposition 4. Among all (symmetric positive definite)
weighting matrices,Wk, the estimator of dk that usesW∗k :=
(P d,uk )−1 has the smallest estimation error covariance P dk ,
i.e., P dk � P

d,Wk

k .

A straightforward corollary follows:
Corollary 1. The constrained and unconstrained input es-
timate errors also satisfy trace(P dk ) ≤ trace(P d,uk ) and
trace(P dk ) ≤ trace(P d,Wk

k ) for any Wk � 0; and equiv-
alently, E[‖d̃k‖22] ≤ E[‖d̃uk‖22] and E[‖d̃k‖22] ≤ E[‖d̃Wk

k ‖22] if
x̂0|0 is unbiased.
Proof. By Proposition 3, P dk − P d,uk � 0. Since the trace
of negative semidefinite matrices is non-positive, it follows
that trace(P dk − P d,uk ) ≤ 0 ⇒ trace(P dk ) ≤ trace(P d,uk ).
The latter trace inequality holds similarly from Proposition
4. Finally, the mean-squared error inequalities follows from
the equivalence: tr(P dk ) = tr(E[d̃kd̃

>
k ]) = E[‖d̃k‖22]. �

Therefore, we observe from the above claims that Wk =
(P d,uk )−1 is “optimal” in that it minimizes the trace of P dk
and thus the mean-squared error of the input estimates. Next,
we view dk as the sum of d̂k and a zero-mean Gaussian
noise term, d̃k. Thus, any additional uncertainty in the input
estimate (trace(P d,uk ) ≥ trace(P dk ) by Corollary 1) will “in-
crease” the effective noise affecting the system. Intuitively,
the larger uncertainty in the noise terms should not lead to
a smaller uncertainty in the state estimates, i.e., we expect
trace(P x,uk ) ≥ trace(P xk ) and E[‖x̃uk|k‖

2
2] ≥ E[‖x̃k|k‖22],

which we observe to hold in simulation and can be explained
in steady-state by the following proposition.

Proposition 5 (Steady-state covariance (time-invariant)).
Suppose that the filters for the linear time-invariant sys-
tems with and without input aggregate equality informa-
tion are stable. Then, the steady-state error covariance
of the state estimates with the input aggregate equality
information/constraint, P x∞, is smaller than without the input
equality, P x,u∞ , i.e., we have P x∞ � P x,u∞ and equivalently,
trace(P x∞) ≤ trace(P x,u∞ ) and E[‖x̃∞‖22] ≤ E[‖x̃u∞‖22].
Proof. As discussed above, with the view that dk = d̂k+ d̃k,
the time-invariant filtering problem is equivalent to

xk+1 = Axk +Buk +Gd̂k +Wweff
k

z2,k = C2xk +D2uk + v2,k,
(11)

where d̂k is known, W =
[
G I

]
, weff

k =
[
d̃>k w>k

]>
and

only the z2,k component of the measurement is used to
ensure the unbiasedness of the estimates (cf. [12]). Note that
we denote with d̂k and d̂uk (and, d̃k and d̃uk) the constrained
and unconstrained input estimates (and input estimate errors).

By Proposition 3, we have P dk � P d,uk , which implies
that P d,uk = P dk + ∆P dk for ∆P dk � 0, which essentially

means that the effective process noise, weff
k , is larger when no

equality input information is incorporated, i.e., Cov(weff,u
k )−

Cov(weff
k ) =: Qeff,u

k −Qeff
k = ∆Qk for some ∆Qk � 0. By

assumption, filters for the linear time-invariant systems with
and without input aggregate equality information are stable
and hence the steady-state effective process noise covariance
Qeff,u
∞ = Qeff

∞ +∆Q∞ exists with ∆Q∞ � 0. Thus, with the
same arguments in [21, pp. 312-316] (briefly summarized
here due to space constraints), a linearity property of the
filters holds in steady-state for any filter gain matrix K, i.e.,
P x∞ = (I−KC2)(AP x∞A

> +WQeff
∞W

>)(I−KC2)>

+KR2K
>

∆P x∞ = (I−KC2)(A∆P x∞A
> +W∆Q∞W

>)(I−KC2)>

P x,u∞ = (I−KC2)(AP x,u∞ A> +WQeff,u
∞ W>)(I−KC2)>

+KR2K
>

where the third equation is a sum of the first two; hence,
P x,u∞ = P x∞ + ∆P x∞, where ∆P x∞ � 0. It follows that
P x∞ � P x,u∞ and equivalently, trace(P x∞) ≤ trace(P x,u∞ ) and
E[‖x̃∞‖22] ≤ E[‖x̃u∞‖22] (same proof as in Corollary 1). �

It is noteworthy that if only the component z2,k ∈ Rl−pHk

with pHk
:= rk(Hk) is used in the measurement update in

ULISE, instead of z′2,k ∈ Rl−pH′
k with pH′

k
:= rk(H ′k) ≤

pHk
(that results from the equivalent system (5)), a slight

loss in optimality may be expected. Moreover, it is unclear
if the input estimates obtained with the projection method
is equivalent to the one with the previous perspective of
the input aggregate knowledge as information, which also
minimizes the trace of the input error covariance matrix [12].

Nonetheless, since the ULISE algorithm is globally opti-
mal over the class of linear input and state estimators [12],
we know that the estimates using the substitution method in
Section III-A.1 are no worse than the estimates that result
from the projection method, whose estimates are in the linear
form (cf. (9)). This means that Propositions 2,3,4,5 and
Corollary 1 also hold for the estimates using the method in
Section III-A.1. Hence, we recommend the use of ULISE
algorithm (see Algorithm 1) with the equivalent system
(5) (i.e., to use the substitution method in Section III-A.1)
over the projection method in this section. The projection
method is provided mainly for analysis purposes and also
in preparation for the next section on filtering with input
aggregate inequality information.

B. Filtering with Input Aggregate Inequality Information
For the case with input inequality information, the pro-

jection method in [16] can be applied to project the uncon-
strained input estimates d̂uk onto the constraint polyhedron,
i.e., we now solve the problem given by
d̂k := arg min

δ
(δ − d̂uk)>Wk(δ − d̂uk) s.t. Rkδ ≤ ρk (12)

where Wk is any symmetric positive definite weighting
matrix. This constrained optimization problem is a quadratic
optimization problem and can be efficiently solved using off-
the-shelf software packages. From the complementary slack-
ness condition of the Karush-Kuhn-Tucker (KKT) conditions
for optimality, we know that we can find the corresponding
active constraints (for each i such that λi > 0) from the
KKT multiplier vector, λ, that is typically returned by the



optimization routine. We denote by R̃k and ρ̃k the rows
of Rk and elements of ρk corresponding to the active
constraints; thus, the constrained input estimate d̂k satisfies
R̃kd̂k = ρ̃k. Similar to (9) and (10), we have in this case

d̂k = d̂uk − J̃k(R̃kd̂
u
k − ρ̃k)

⇒ d̃k = (I − Jk)d̃uk + J̃k(R̃kdk − ρ̃k),
(13)

where J̃k := W−1
k R̃>k (R̃kW−1

k R̃>k )−1 and Jk := J̃kR̃k. If
J̃k(R̃kdk − ρ̃k) = 0 (implicitly assumed in [17]), then we
have d̃k = (I−Jk)d̃uk and thus, Propositions 2, 3 and 4 would
directly follow. However, we observed in our simulations
that this condition does not generally hold. In this case, we
show in the following that the estimates may no longer be
unbiased, although the error covariance of the constrained es-
timates is still lower than that of the unconstrained estimates
when dk is deterministic and Wk = (P d,uk )−1.

Proposition 6. Suppose J̃k(R̃kdk − ρ̃k) 6= 0 but E[d̃uk ] = 0
(a property of ULISE [12]). Then, the inequality constrained
input estimate d̂k is biased, i.e., E[d̃k] = J̃k(R̃kdk−ρ̃k) 6= 0.

Proof. Although d̂uk is unbiased [12], since J̃k(R̃kdk−ρ̃k) 6=
0, it follows from (13) that input estimate is biased. �

Proposition 7. Suppose dk is deterministic. Then, the con-
strained input estimate d̂k as given by (12) with Wk =
(P d,uk )−1 has a smaller error covariance than the uncon-
strained input estimate d̂uk , i.e., P dk � P

d,u
k , and equivalently,

trace(P dk ) ≤ trace(P d,uk )).

Proof. Since dk is deterministic, from (13), we have
P dk := Cov(d̃k) = (I − Jk)Cov(d̃uk)(I − Jk)>

= (I − Jk)P d,uk (I − Jk)>

= P d,uk − JkP d,uk − P d,uk J>k + JkP
d,u
k J>k

= P d,uk − JkP d,uk ,

(14)

where the final equality is obtained because it
can be verified from the definition of Jk that
P d,uk J>k = JkP

d,u
k J>k with Wk = (P d,uk )−1. Furthermore,

JkP
d,u
k = P d,uk R̃>k (R̃kP

d,u
k R̃>k )−1R̃kP

d,u
k � 0 and thus,

trace(JkP
d,u
k ) ≥ 0. It then follows that P dk � P d,uk and

trace(P dk ) ≤ trace(P d,uk ). �

Proposition 8. Suppose dk is deterministic. Among all
(symmetric positive definite) weighting matrices, Wk−1, the
estimator of dk that usesWk−1 = (P d,uk−1)−1 has the smallest
estimation error covariance.

Proof. Proceeding from (14), the proof is identical to [16,
Theorem 3]. �

Next, with the inequality constrained input estimate d̂k−1

given in (12), we proceed as in the ULISE algorithm (cf.
Algorithm 1) with the time update and measurement update
steps to find the propagated and updated state estimates:

x̂?k|k = Ak−1x̂k−1|k−1 +Bk−1uk−1 +Gk−1d̂k−1 (15)

x̂k|k = x̂?k|k + L̃k(z2,k − C2,kx̂
?
k|k −D2,kuk) (16)

where the filter gain L̃k can be chosen as in [12] to minimize
the state estimate error covariance trace(P xk|k):

L̃k = (P ?xk|kC
>
2,k − Ĝ2,k−1M2,kR2,k)R̃?†2,k, (17)

where we defined Ĝ2,k−1 := Gk−1(I − Jk−1)V2,k−1,
R̃?2,k := C2,kP

?x
k|kC

>
2,k + R2,k − C2,kĜ2,k−1M2,kR2,k −

R2,kM
>
2,kĜ

>
2,k−1C2,k and the propagated state estimate error

covariance is given by

P ?xk|k =
[
Ak−1 Gk−1

] [P xk−1|k−1 P
xd
k−1

P xd >k−1 P dk−1

] [
A>k−1

G>k−1

]
+Qk−1

−Ĝ2,k−1M2,kC2,kQk−1 −Qk−1C
>
2,kM

>
2,kĜ

>
2,k−1, (18)

while the resulting P xk|k can be computed as

P xk|k = L̃kR2,kL̃
>
k + (I − L̃kC2,k)Ĝ2,k−1M2,kR2,kL̃

>
k

+L̃kR2,kM
>
2,kĜ

>
2,k−1(I − L̃kC2,k)>

+(I − L̃kC2,k)P ?xk|k(I − L̃kC2,k)>. (19)
The derivation of the above equations is similar to [12] with
the small difference that d̃k is as given in (13), where its
(unknown) deterministic term does not play a role in the
computation of error cross-covariances if we assume that
the state estimates remain unbiased. Since this may not hold
in general because of the possible bias in the input esti-
mates (Proposition 6), the resulting filter may be suboptimal.
Besides, due to the use of only z2,k (cf. discussion at the
end of Section III-A.2), the optimality of this filter may
further deteriorate. However, this loss of optimality is hardly
noticeable in the simulations in Section IV-B, with this filter
(summarized in Algorithm 2) still outperforming the case
when the input inequality information is ignored.

IV. ILLUSTRATIVE EXAMPLES

A. Fault Identification
We consider the benchmark problem of state estimation

and fault identification [8], [12] when the system dynamics
is plagued by faults, dk, that influence the system dynam-
ics through the input matrix Gk and the outputs through
the feedthrough matrix Hk as well as zero-mean Gaussian
white noises. Moreover, we assume partial knowledge of the
unknown inputs in the linear form Rdk = ρk.

A =


0.5 2 0 0 0
0 0.2 1 0 1
0 0 0.3 0 1
0 0 0 0.7 1
0 0 0 0 0.1

;G =


1 0 −0.3
1 0 0
0 0 0
0 0 0
0 0 0

;H =


0 0 1
0 0 0
0 1 0
0 0 0
0 0 0

;

Q = 10−2


1 0 0 0 0
0 1 0.5 0 0
0 0.5 1 0 0
0 0 0 1 0
0 0 0 0 1

;R =


1 0 0 0.5 0
0 1 0 0 0.3
0 0 1 0 0

0.5 0 0 1 0
0 0.3 0 0 1

;

B = 05×1; C = I5; D = 05×1; R =

[
1 0 1
0 1 1

]
.

The unknown inputs used in this example are

dk,1 =

{
1, 500 ≤ k ≤ 700
0, otherwise

dk,2 =

{
1

700
(k − 100), 100 ≤ k ≤ 800

0, otherwise

dk,3 =

{
3, 500 ≤ k ≤ 549, 600 ≤ k ≤ 649, 700 ≤ k ≤ 749
−3, 550 ≤ k ≤ 599, 650 ≤ k ≤ 699, 750 ≤ k ≤ 799
0, otherwise.

Figure 1 shows a comparison of the input and state
estimates with and without the input aggregate information
(i.e., constrained by a linear equality and unconstrained,
respectively). As expected, the estimates when given the



Algorithm 2 i-ULISE algorithm (for inequality constrained
unknown inputs)

1: Initialize: P x0|0 = Px0 = (C>2,0R
−1
2,0C2,0)−1 ; x̂0|0 = E[x0] =

P x0|0C
>
2,0R

−1
2,0(z2,0−D2,0u0); Â0 = A0−G1,0Σ−1

0 C1,0; Q̂0 =

G1,0Σ−1
0 R1,0Σ−1

0 G>1,0 + Q0; d̂u1,0 = Σ−1
0 (z1,0 − C1,0x̂0|0 −

D1,0u0); P d1,0 = Σ−1
0 (C1,0P

x
0|0C

>
1,0 +R1,0)Σ−1

0 ;
2: for k = 1 to N do
. Estimation of d2,k−1 and dk−1

3: Âk−1 = Ak−1 −G1,k−1M1,k−1C1,k−1;
4: Q̂k−1 = G1,k−1M1,k−1R1,k−1M

>
1,k−1G

>
1,k−1 +Qk−1;

5: P̃k = Âk−1P
x
k−1|k−1Â

>
k−1 + Q̂k−1;

6: R̃2,k = C2,kP̃kC
>
2,k +R2,k;

7: P d,u2,k−1 = (G>2,k−1C
>
2,kR̃

−1
2,kC2,kG2,k−1)−1;

8: M2,k = P d,u2,k−1G
>
2,k−1C

>
2,kR̃

−1
2,k;

9: x̂k|k−1 = Ak−1x̂k−1|k−1 +Bk−1uk−1 +G1,k−1d̂
u
1,k−1;

10: d̂u2,k−1 = M2,k(z2,k − C2,kx̂k|k−1 −D2,kuk);
11: d̂uk−1 = V1,k−1d̂

u
1,k−1 + V2,k−1d̂

u
2,k−1;

12: P d,u12,k−1 = M1,k−1C1,k−1P
x
k−1|k−1A

>
k−1C

>
2,kM

>
2,k

−P d,u1,k−1G
>
1,k−1C

>
2,kM

>
2,k;

13: P d,uk−1 = Vk−1

[
P d,u1,k−1 P d,u12,k−1

P d,u>12,k−1 P d,u2,k−1

]
V >k−1;

14: P xd,u2,k−1 = −P xk−1|k−1A
>
k−1C

>
2,kM

>
2,k

−P xd,u1,k−1G
>
1.k−1C

>
2,kM

>
2,k;

15: P xd,uk−1 = P xd,u1,k−1V
>
1,k−1 + P xd,u2,k−1V

>
2,k−1;

16: d̂k−1 =
arg minδ(δ − d̂uk−1)>(P d,uk−1)−1(δ − d̂uk−1)

subject to Rk−1δ ≤ rk−1;

17: R̃k−1 and r̃k−1 corresponding to active set;
18: Jk−1 = P d,uk−1R̃

>
k−1[R̃k−1P

d,u
k−1R̃

>
k−1]−1R̃k−1;

19: Ĝ2,k−1 = Gk−1(I − Jk−1)V2,k−1;
20: P dk−1 = (I − Jk−1)P d,uk−1(I − Jk−1)>;
21: P xdk−1 = P xd,uk−1 (I − Jk−1)>;

. Time update
22: x̂?k|k = Ak−1x̂k−1|k−1 +Bk−1uk−1 +Gk−1d̂k−1;

23: P ?xk|k =
[
Ak−1 Gk−1

] [P xk−1|k−1 P xdk−1

P xd >k−1 P dk−1

] [
A>k−1

G>k−1

]
+Qk−1

−Ĝ2,k−1M2,kC2,kQk−1 −Qk−1C
>
2,kM

>
2,kĜ

>
2,k−1;

24: R̃?2,k = C2,kP
?x
k|kC

>
2,k +R2,k − C2,kĜ2,k−1M2,kR2,k

−R2,kM
>
2,kĜ

>
2,k−1C2,k;

. Measurement update
25: L̃k = (P ?xk|kC

>
2,k − Ĝ2,k−1M2,kR2,k)R̃?†2,k;

26: x̂k|k = x̂?k|k + L̃k(z2,k − C2,kx̂
?
k|k −D2,kuk);

27: P xk|k = (I − L̃kC2,k)Ĝ2,k−1M2,kR2,kL̃
>
k

+L̃kR2,kM
>
2,kĜ

>
2,k−1(I − L̃kC2,k)>

+(I − L̃kC2,k)P ?xk|k(I − L̃kC2,k)>+ L̃kR2,kL̃
>
k ;

. Estimation of d1,k
28: R̃1,k = C1,kP

x
k|kC

>
1,k +R1,k;

29: M1,k = Σ−1
k ;

30: P d,u1,k = M1,kR̃1,kM1,k;
31: d̂u1,k = M1,k(z1,k − C1,kx̂k|k −D1,kuk);
32: end for

input aggregate information are closer to the true states and
inputs and have lower error covariances (cf. Figure 2).

B. 3-Area Power System
We consider a power system [19], [22] with three intercon-

nected control areas, each consisting of generators and loads,
with tie-lines providing interconnections between areas. A
simplified model of the control areas and the tie-lines is given
by (cf. parameter definitions in [22, Chap. 10], [23]):
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Fig. 1: Unconstrained (‘unc’) and constrained estimates of
states x1, x2, x3, x4, x5, and unknown inputs d1, d2 and d3

in Example IV-A.
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Fig. 2: Traces of unconstrained and constrained estimate
error covariance of states, trace(P x), and unknown inputs,
trace(P d) in Example IV-A.
Control area i: (i ∈ {1, 2, 3})
d∆ωi

dt + Di∆ωi

Mi
− ∆Pmechi

Mi
+

∑
j 6=i ∆P ij

tie

Mi
= −∆PLi

Mi
,

d∆Pmechi

dt +
∆Pmechi

TCHi
− ∆Pvi

TCHi
= 0,

d∆Pvi

dt +
∆Pvi

TGi
+ ∆ωi

Rf
i TGi

=
∆Prefi

TGi
;

(20)

Tie-line power flow, P ijtie, between areas i and j:
d∆P ij

tie

dt = Tij(∆ωi −∆ωj),

∆P jitie = −∆P ijtie,
(21)

where ∆ωi, ∆Pmechi
and ∆Pvi represent deviations of

the angular frequency, mechanical power and steam-valve
position from their nominal operating values. We assume
that all states are measured (i.e., Cqkk = I) where the system
is affected by additive zero mean Gaussian white process and
measurement noises with known covariances Q = 10−2 ×
diag(1, 1.6, 2, 1.2, 2.5, 1.4, 0.3, 2.11, 3, 0.2, 0.9, 1.8) and
R = 10−2×diag(2.1, 0.6, 2.2, 0.2, 1.9, 1.4, 1.3, 1.1, 2.3, 1.2,
0.3, 1.8). Moreover, the measurements of ∆ωi are injected
with adversarial additive signals dk =

[
dk,1 dk,2 dk,3

]>
,

where the attacker is limited in that ‖dk‖1 ≤ 6, or

equivalently,


1 1 1
1 1 −1
1 −1 1
1 −1 −1
−1 1 1
−1 1 −1
−1 −1 1
−1 −1 −1

 dk ≤

6
6
6
6
6
6
6
6

. The system parameters

used in this example are D1 = 3, Rf1 = 0.03, Ma
1 = 4,

TCH1
= 5, TG1

= 4, D2 = 0.275, Rf2 = 0.07, Ma
2 = 40,

TCH2
= 10, TG2

= 25, D3 = 2, Rf3 = 0.04, Ma
3 = 35,

TCH3
= 20, TG3

= 15, T12 = 2.54, T23 = 1.5, T31 = 2.5.
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Fig. 3: Unconstrained (‘unc’) and constrained state and attack
magnitude estimates in Example IV-B.
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Fig. 4: Traces of unconstrained and constrained estimate
error covariance of states, trace(P x), and unknown inputs,
trace(P d) in Example IV-B.

A comparison of the input and state estimates with and
without the linear inequality constraint is shown in Figure
3. We observe little or no improvement to the state estima-
tion, presumably because the attack signals only affect the
measurements and not the system dynamics. However, we
see that the input estimates are closer to the true inputs and
the predicted bias (see Proposition 6) appears insignificant.
This can probably be explained by noticing that the bias is
introduced only when R̃kd̂k = ρ̃k but R̃kdk 6= ρ̃k. That
R̃kd̂k = ρ̃k suggests that R̃kdk − ρ̃k and thus the bias
in (13) is likely to be small. We also observe in Figure
4 that the error covariance of the input is decreased only
when the estimates are projected onto the boundary of the
polyhedron described by linear inequality constraints, as
expected. This also suggests that linear inequality constraints
are less informative than equality constraints.

V. CONCLUSION

We presented filtering algorithms for simultaneous input
and state estimation of linear discrete-time stochastic systems
for systems in which the inputs are not completely known
but some aggregate information of the unknown inputs is
available, either as linear equality or inequality constraints.
Using two complementary views of the partial input in-
formation, we study the properties of the filters including
the conditions for stability and optimality in the minimum-
variance unbiased sense. We show that the estimate error
covariance of the filters decreases when input aggregate
information is available in either form. Moreover, given an
equality constraint, the estimates remain unbiased but when

given as an inequality constraint, the estimates may be biased
although the bias is imperceptible in our simulation example.
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