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Abstract— In this paper, we propose a novel state estimation
algorithm that is resilient to sparse data injection attacks and
robust to additive and multiplicative modeling errors. By leverag-
ing principles of robust optimization, we construct uncertainty
sets that lead to tractable optimization solutions. As a corollary,
we obtain a novel robust filtering algorithm when there are no
attacks, which can be viewed as a “frequentist” robust estimator
as no known priors are assumed. We also describe the use
of cross-validation to determine the hyperparameters of our
estimator. The effectiveness of our estimator is demonstrated
in simulations of an IEEE 14-bus electric power system.

I. INTRODUCTION

Cyber-Physical Systems (CPS) are computer-based sys-
tems that monitor and control physical processes using
embedded sensors, actuators, control processing units and
communication devices. They characterize many of the crit-
ical infrastructures that sustain our modern society, such as
electric power distribution, oil and natural gas distribution,
water and waste-water treatment, and transportation systems.
The disruption of these control systems can have disas-
trous consequences on public health and safety and cause
significant economic losses. As CPS become increasingly
connected to the internet for remote monitoring and control,
they become vulnerable to cyber attacks on their communi-
cation channels, which may lead to physical consequences in
the forms of faults and failures. Recent incidents of attacks
on CPS, including the Maroochy water breach and StuxNet
computer worm [1]–[3], emphasize the need for estimation
and control algorithms that are resilient to attacks.

Literature Review. Early research on the design of resilient
systems has focused on the characterization of undetectable
attacks and on attack detection and identification techniques.
These range from a simple application of data time-stamps
[4] to hypothesis testing using residuals [5]–[8]. More recent
works have addressed the problem of state estimation despite
attacks, but assume known system parameters and the ab-
sence of noise signals. For known linear systems under sparse
data injection attack, the resilient state estimation problem
is mapped onto an `0 optimization problem in [9]. The
estimator is subsequently relaxed using the “`1/`r” norm and
demonstrated to be effective under the prescribed conditions.
A characterization of the maximum number of correctable
attacks was also provided.

For linear systems with bounded additive modeling errors,
[10] quantifies the worst-case state estimation error bound
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when the estimate is generated for the case where the
additive modeling errors are implicitly benign, i.e., they
can cancel out the attack signals. Hence, this “optimistic”
estimate unfortunately does not provide the robustification
that we seek. On the other hand, our previous works [11],
[12] propose a resilient estimator that generates unbiased
estimates asymptotically when the system is perturbed by
additive noise signals that are zero mean, Gaussian white
processes. Both extensions require the solution of a combi-
natorial problem, which is intractable for large systems. By
contrast, H∞ filtering approaches (e.g., [13]) cannot take into
account the sparse nature of the data injection attack.

Even in the absence of attacks, the robust estimation
problem with modeling errors is of significant interest and
has been primarily considered from the Bayesian perspective,
i.e., with the assumption of known priors. The robust Kalman
filtering approach in [14] minimizes the worst-case mean
squared state estimation error asymptotically using multiple
steady-state Riccatti equations, whereas the set-valued fil-
tering approach in [15] utilizes semidefinite relaxation for
computing minimal size ellipsoids that bound the solution
set of a system of uncertain linear equations.

Another set of relevant literature pertains to that of robust
optimization, which addresses the problem of optimization
under uncertainty, in which the uncertainty model is not
stochastic, but rather deterministic and set-based (e.g., [16],
[17]). Of particular relevance is the subject of robust regres-
sion and specifically of the equivalence of robustification and
regularization in linear regression under some assumptions
on the uncertainty sets [18], [19]. This equivalence is a key
tool that we will make use of in our estimator design.

Contributions. We propose a novel and computationally
tractable state estimation algorithm for uncertain linear sys-
tems under adversarial attacks that is resilient to sparse data
injection attacks (i.e., an adversary can arbitrarily corrupt
an unknown but fixed subset of actuators and sensors) and
robust to additive and multiplicative modeling errors. Specif-
ically, we leverage principles of robust optimization and
construct uncertainty sets that lead to tractable optimization
solutions. As a by-product, we also obtain a novel robust
filtering algorithm when there are no attacks, which, in
contrast to the existing literature [14], [15], uses a frequentist
approach with no assumed known priors. Since it is difficult
to predict the modeling errors for the purpose of constructing
our uncertainty sets, we use a statistical learning procedure
known as cross-validation to determine the hyperparameters
of our estimator. As in [9], we illustrative the effectiveness
of our approach using random systems and the IEEE 14-bus
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electric power system [20].
Notation. For any vector v ∈ Rn, va:b, 1 ≤ a ≤ b ≤ n,

denotes the subset of v comprising the a-th to b-th entries of
v, inclusive. v> denotes the transpose of v. For any matrix
M ∈ Rm×n, M(i,·) ∈ Rn denotes the i-th row of M , i ∈
{1, · · · ,m}, and M(·,j) ∈ Rm denotes the j-th column of
M , j ∈ {1, · · · , n}. In addition, the following matrix norms
will be used:
• `0 norm: ‖M‖`0 = number of nonzero rows of M ,
• “mixed” `1/`r” norm: ‖M‖`1/`r =

∑m
i=1 ‖M(i,·)‖`r ,

• (`q, `r) subordinate norm: ‖M‖(`q,`r) =max
β 6=0

‖M β‖`r
‖β‖`q

.

II. PROBLEM STATEMENT

We model an uncertain CPS that is under attack as the
following linear, time invariant (LTI) dynamical system:

xk+1 = Ã xk + B̃ (uk + dk) + wk,

yk = C̃ xk + D̃ (uk + dk) + ek + vk,
(1)

where xk ∈ Rn is the state vector at time k, uk ∈ Rm is a
known input vector and yk ∈ Rp is the measurement vector.
The data injection attacks carried out by the adversary affect
the system through the attack signals dk ∈ Rm and ek ∈ Rp

that are injected into the actuators and sensors, respectively.
The system parameters Ã := A+ ∆A, B̃ := B+ ∆B, C̃ :=
C+∆C and D̃ := D+∆D each consist of a known nominal
part (A, B, C and D) as well as an unknown part (∆A,
∆B, ∆C and ∆D) that represents multiplicative modeling
errors. In addition, the system is affected by additive process
and measurement modeling errors, wk ∈ Rn and vk ∈ Rp,
respectively (also referred to as noise signals).

We will assume in this paper that the pair (Ã, C̃) is
observable and that the known inputs uk are independent
of x0 (i.e., we consider the closed loop dynamics in which
the dependence of uk on x0 is already incorporated into
the system). In addition, an adversary attacks a fixed but
unknown subset of the sensors and actuators. Note that if
sensor i ∈ {1, · · · , p} is not attacked then necessarily e(i)

k =

0 for all time steps k; otherwise e(i)
k can take any value, i.e.,

the attack signals are sparse, arbitrary and unpredictable. The
same observation holds for the attacks on actuators dk.

In this paper, the term “resilient” describes a system
that can withstand direct adversarial actions, which we will
restrict to data injection attacks [5], [6], [8]. On the other
hand, a “robust” system can withstand disturbances and
modeling errors (also referred to as uncertainties).

The objective of this paper is robust and resilient state es-
timation: Given T corrupted measurements y0, y1, · · · , yT−1

and known inputs u0, u1, · · · , uT−1, we wish to obtain
estimates for the states x0, · · · , xT−1 that are 1) robust to
uncertainties, and 2) resilient to data injection attacks.

III. PRELIMINARY MATERIAL

A. Known System with Sensor Attacks Only

We begin with the following simplified system:

xk+1 = Axk, yk = Cxk + ek, (2)

where the goal of the estimator is to reconstruct the state
sequence x0, · · · , xT−1 from the corrupted measurements
y0, · · · , yT−1. However, since A is known, the remaining
states x1, · · · , xT−1, can be reconstructed from x0 using (2)
and therefore it is sufficient to recover x0.

The system (2) can be written compactly as

Y = Φ(x0) + E,

where Y :=
[
y0 · · · yT−1

]
∈ Rp×T , E :=[

e0 · · · eT−1

]
∈ Rp×T and Φ is a linear map defined

by Φ : Rn → Rp×T :

Φ(x) =
[
Cx CAx · · · CAT−1x

]
. (3)

The optimal estimator of x0 for (2) is found by [9] to be

x0 = arg min
x0∈Rn

‖E‖`0 = arg min
x0∈Rn

‖Y − Φ(x0)‖`0 . (4)

In addition, it was shown that, if (A,C) is observable,
then the maximum number of attacked sensors (such that x0

can be reconstructed exactly) is dp2−1e. Moreover, the max-
imum number of correctable errors cannot increase beyond
a window size of T = n measurements (a consequence of
Cayley-Hamilton theorem). However, since (4) is intractable
(NP-hard), a convex relaxation of the optimal estimator using
a “mixed” `1/`r norm is considered in [9] that is also used
in the compressed sensing literature [21], i.e., the relaxed
estimator minimizes the `1/`r norm of E:

x̂0 = arg min
x0∈Rn

‖E‖`1/`r = arg min
x0∈Rn

‖Y − Φ(x0)‖`1/`r . (5)

The “hat” on x̂0 denotes that the relaxed estimator (5)
generates an estimate of x0, whereas the optimal estimator
(4) recovers the exact x0. The relaxed estimator (5) has been
demonstrated to generate estimates that are close to the exact
solutions in [9]. The remaining state estimates x̂1, · · · , x̂T−1,
are then obtained by forward propagation from x̂0 using (2).

B. Known System with Actuator and Sensor Attacks

Next, we consider the following system

xk+1 = Axk +B (uk + dk) ,
yk = Cxk +D (uk + dk) + ek,

(6)

which can be written compactly as

Y = Φ(x0) + Θ(U) + Θ(D) + E,

where Y :=
[
y0 · · · yT−1

]
∈ Rp×T , and U ∈ Rm×T ,

D ∈ Rm×T and E ∈ Rp×T are defined similarly. Φ : Rn →
Rp×T is as defined in (3) and Θ : Rm×T → Rp×T is a linear
map defined by

Θ(U)=

[
Du0 CBu0 +Du1 · · ·

C
∑T−2

i=0 AT−2−iBui
+DuT−1

]
Θ(D)=

[
Dd0 CBd0 +Dd1 · · ·

C
∑T−2

i=0 AT−2−iBdi
+DdT−1

]
.

(7)

For (6), the optimal estimator was shown by [9] to be

(x0,D) = arg min
x0∈Rn

D∈Rm×T

‖Y − Φ(x0)−Θ(U)−Θ(D)‖`0
+ ‖D‖`0 .

(8)
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In contrast to (4), the optimal estimator in (8) has to
generate the initial state x0 as well as the actuator attacks D
so that the remaining states x1, · · · , xT−1 can be recovered
using (6). Similar to (5), the following convex relaxation of
(8) is considered:

(x̂0, D̂) = arg min
x0∈Rn

D∈Rm×T

‖Y − Φ(x0)−Θ(U)−Θ(D)‖`1/`r
+λ ‖D‖`1/`r

(9)

where λ is a tuning parameter. Since the system param-
eters are known, the estimates of the remaining states
x̂1, · · · , x̂T−1 can be obtained using x̂0, estimates of the
actuator attacks D̂ :=

[
d̂0 · · · d̂T−1

]
and (6).

C. Equivalence of Robust Regression and Regularization
A useful theorem that we shall make use of in our design

of a robust estimator is the equivalence of robust regression
and regularization under subordinate norm uncertainty sets.

Theorem 1 (Equivalence of Robust Regression and Reg-
ularization [19, Corollary 1]). Let ∆Ψ be an uncertain
matrix belonging to the uncertainty set U(`q,`r) = {∆Ψ :
‖∆Ψ‖(`q,`r) ≤ ρ}. If q, r ∈ [1,∞] then for some matrix Ψ
and vectors y, β, we have

max
∆Ψ∈U(`q,`r)

‖y − (Ψ + ∆Ψ)β‖`r = ‖y −Ψβ‖`r + ρ‖β‖`q .

Proof. See [19, Corollary 1]. �

It is worth noting that there are also similar theorems for
the Schatten and Frobenius norms [16], [19], [22].

IV. ROBUST AND RESILIENT ESTIMATION

Now we are ready to consider the uncertain system under
attack in (1), which can be compactly written as

Y = Φ̃(x0) + Θ̃(U) + Θ̃(D) + Υ̃(W,V) + E (10)

where Y :=
[
y0 · · · yT−1

]
∈ Rp×T , and D ∈ Rm×T ,

U ∈ Rp×T , W ∈ Rn×T , V ∈ Rp×T and E ∈ Rp×n are
defined similarly. Φ̃, Θ̃ and Υ̃ are linear maps, with Φ̃ :
Rn → Rp×T and Θ̃ : Rm×T → Rp×T that are similarly
defined as in (3) and (7), except with the true matrices, Ã,
B̃, C̃ and D̃, while Υ̃ : Rn×T × Rp×T → Rp×T is:

Υ̃(W,V) =

[
v0 C̃w0 + v1 · · · C̃

∑T−2
i=0 ÃT−2−iwi

+vT−1

]
.

(11)
In light of the uncertain parameters in (1), we consider the

robustification of the estimator in (9) by using the compact
representation in (10), i.e.,

(x̂0, D̂) = arg min
x0∈Rn

D∈Rm×T

max
∆Ψ∈U(`q,`r)

‖E‖`1/`r + λ‖D‖`1/`r

= arg min
x0∈Rn

D∈Rm×T

max
∆Ψ∈U(`q,`r)

∥∥∥∥∥ Y − Φ̃(x0)− Θ̃(U)

−Θ̃(D)− Υ̃(W,V)

∥∥∥∥∥
`1/`r

+λ‖D‖`1/`r (12)

for some tuning parameter λ and some uncertain ∆Ψ belong-
ing to the uncertainty set U(`q,`r), which will be described
in Definition 1. In Section IV-A, we will provide ∆Ψ and
U(`q,`r) that will lead to tractable formulations of (12).

A. Robust and Resilient Estimation of Initial State x0 and
Actuator Attack Signals D

Similar to the approach in [9], we first find estimates of
x0 and the actuator attacks D. Notice that it is helpful to
consider another compact representation of (1):

y = Õx0 + J̃u(u + d) + J̃ww + e + v (13)

with y := vec(Y), u := vec(U), d := vec(D), e :=
vec(E), w := vec(W) and v := vec(V), where vec(·) is
the vectorization operator, and we also define the following
observability and invertibility matrices

Õ =
[
C̃> (C̃Ã)> (C̃Ã2)> . . . (C̃ÃT−1)>

]>
,

J̃u =


D̃ 0 0 . . . 0

C̃B̃ D̃ 0 . . . 0

C̃ÃB̃ C̃B̃ D̃ . . . 0
...

...
...

. . .
...

C̃ÃT−2B̃ C̃ÃT−3B̃ C̃ÃT−4B̃ · · · D̃

 ,

J̃w =


0 0 0 . . . 0

C̃ 0 0 . . . 0

C̃Ã C̃ 0 . . . 0
...

...
...

. . .
...

C̃ÃT−2 C̃ÃT−3 C̃ÃT−4 · · · 0

 .
The matrices O and Ju are defined in a similar fashion with
the nominal system matrices A, B, C and D. We also define
∆O := Õ − O and ∆Ju := J̃u − Ju.

1) Row-wise Uncertainty Sets: We now define an uncer-
tainty set U(`q,`r) that captures the notion of boundedness
of both the additive and multiplicative modeling errors.
Specifically, we let ∆Ψ ∈ U(`q,`r) represent all row-wise
uncertainty sets ∆Ψi ∈ Ui,(`q,`r) for i = 1, · · · , p, which we
assume are uncoupled from each other and are defined as
follows:

Definition 1 (Row-wise uncertainty sets). For each i =
1, · · · , p, we define the row-wise uncertainty matrix as

∆Ψi :=
[
(∆O)i (∆Ju)i (∆Ju)i (J̃w)iw + (v)i

]
,

which we assume belong to the uncertainty set Ui,(`q,`r) =
{∆Ψi : ‖∆Ψi‖(`q,`r) ≤ ρi}, with (M)i denoting
the submatrix of M consisting of only the (i + jp)-
th rows of M for j = 0, · · · , T − 1. (e.g., (Õ)i :=[
C̃(i,·) (C̃Ã)(i,·) (C̃Ã2)(i,·) . . . (C̃ÃT−1)(i,·)

]>
).

2) Estimator Design: Notice that with the definition of
the `1/`r norm for E, i.e., ‖E‖`1/`r =

∑p
i=1 ‖E(i,·)‖`r and

the assumption of uncoupled row-wise uncertainty sets as
defined in Definition 1, we can consider the problem in (12)
by first considering a collection of subproblems for each of
the i-th row of E, i.e.,

max
∆Ψi∈Ui,(`q,`r)

∥∥E(i,·)
∥∥
`r

= max
∆Ψi∈Ui,(`q,`r)

∥∥∥∥∥ (Y − Φ̃(x0)− Θ̃(U)

−Θ̃(D)− Υ̃(W,V))(i,·)

∥∥∥∥∥
`r

(14)
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for some uncertain matrix ∆Ψi belonging to the row-wise
uncertainty set Ui,(`q,`r) as in Definition 1. The subproblems
can be simplified as is shown in the following lemma.

Lemma 1. Let ∆Ψi and Ui,(`q,`r) be defined according to
Definition 1. In addition, we define

Ψi :=
[
(O)i (Ju)i (Ju)i 0T×1

]
,

β :=
[
x>0 u> d> 1

]>
.

Then, for any q, r ∈ [1,∞], (14) is equivalent to

max
∆Ψi∈Ui,(`q,`r)

∥∥E(i,·)
∥∥
`r

= ‖Y(i,·) −Ψiβ‖`r + ρi‖β‖`q .

Proof. We can rewrite E(i,·) as follows

E(i,·) =
(

Y − Φ̃(x0)− Θ̃(U)− Θ̃(D)− Υ̃(W,V)
)

(i,·)

= Y(i,·) − (Ψi + ∆Ψi)β.

The result follows by applying Theorem 1 to (14). �

Now we are ready to develop a robust estimator for (12),
followed by a corollary for the special case of `q = `1

1.

Proposition 1 (Robust Estimation of x0 with `1/`r relax-
ation and `q-regularization). Let ∆Ψ ∈ U(`q,`r) represent
uncoupled ∆Ψi ∈ Ui,(`q,`r) for all i = 1, · · · , p. Then, for
any q, r ∈ [1,∞), the robust estimator is equivalent to the
following constrained optimization problem

(x̂0, D̂) = arg min
x0∈Rn

D∈Rm×T

β∈Rn+2mT+1

‖Y − Φ(x0)−Θ(U)−Θ(D)‖`1/`r
+λ‖D‖`1/`r + ρ‖β‖`q

s.t. β1:n = x0

βn+1:n+mT = vec(U)
βn+mT+1:n+2mT = vec(D)
βn+2mT+1 = 1

with ρ =
∑p

i=1 ρi (cf. Definition 1). λ > 0 is a tuning
parameter that controls the relative weight between penalties
on errors corresponding to attacks on sensors and actuators.

Proof. This proposition follows the repeated application
of Lemma 1 and by noticing that Y(i,·) − Ψi β =
(Y − Φ(x0)−Θ (U)−Θ(D))(i,·). �

Corollary 1 (Robust Estimation of x0 with `1/`r relaxation
and `1-regularization). Let ∆Ψ ∈ U(`1,`r) represent ∆Ψi ∈
Ui,(`1,`r) for all i = 1, · · · , p. Then, for any r ∈ [1,∞],

(x̂0, D̂) = arg min
x0∈Rn

D∈Rm×T

‖Y − Φ(x0)−Θ(U)−Θ(D)‖`1/`r
+ρ‖x0‖`1 + ρ‖D‖`1/`1 + λ‖D‖`1/`r .

with ρ =
∑p

i=1 ρi (cf. Definition 1). λ > 0 is a tuning
parameter that controls the relative weight between penalties
on errors corresponding to attacks on sensors and actuators.

Proof. Noting that ‖β‖`1 = ‖x0‖`1 + ‖u‖`1 + ‖d‖`1 + 1,
‖d‖`1 = ‖D‖`1/`1 and Y(i,·)−Ψiβ = (Y−Φ(x0)−Θ (U)−

1Besides simplifying the robust estimator, this choice is also observed to
be justified in simulations in Section V-B.5.

Θ(D))(i,·), the application of Lemma 1 on (14) gives

max
∆Ψi∈Ui,(`q,`r)

∥∥E(i,·)
∥∥
`r

=
∥∥∥(Y−Φ(x0)−Θ(U)−Θ(D))(i,·)

∥∥∥
`r

+ ρi(‖x0‖`1 + ‖u‖`1 + ‖d‖`1 + 1).

Since we have assumed that u is independent of x0, we
can use the above for each i to obtain the equivalence of
(12) to the expression in the corollary statement. �

3) Summary: A key insight we gained is that, with an
appropriate choice of an uncertainty set from Definition
1, a robustification of (9) is equivalent to a regularization
procedure. Note that we denote the resulting robust and
resilient estimates of Proposition 1 as (x̂

`1/`r
0,rob , D̂rob), and the

estimates of the nominal estimator in (9) as (x̂
`1/`r
0,nom, D̂nom).

In contrast to the nominal estimator, the robust and resilient
estimator has an additional parameter ρ that controls the
amount of robustification (a greater ρ indicates a more
conservative estimator). Moreover, the nominal estimator is
equivalent to the robust version with ρ = 0.

Remark 1. In practice, it is difficult to construct ρ because
the modeling errors cannot be accurately predicted. In
addition, there is no clear strategy for selecting the ideal
values for λ, `q and `r. Thus, it is natural to use a statistical
approach such as cross-validation with data sets to obtain
these hyperparameters, which will be discussed in detail in
Section V-B.1.

B. Robust Estimation of the Remaining States
Even with the estimates (x̂0, D̂), we cannot obtain

x̂1, · · · , x̂T−1 using (1) because the system parameters Ã, B̃
and the additive error wk are unknown. Therefore, we now
develop a robust estimator for the states x1, · · · , xT−1 using
(x̂0, D̂). This second problem can be formulated as: Given
(x̂0, D̂) and known inputs u, we wish to obtain estimates
of the remaining states X :=

[
x>1 x>2 · · · x>T−1

]>
that

are robust to modeling errors ∆A, ∆B and wk.
First, note that state equations in (1) can be written as

X = P̃x0 + K̃u(u + d) + K̃ww, (15)

where the state transition and input matrices are given by

P̃ =
[
(Ã)> (Ã2)> . . . (ÃT−1)>

]>
,

K̃u =


B̃ 0 0 . . . 0 0

ÃB̃ B̃ 0 . . . 0 0

Ã2B̃ ÃB̃ B̃ . . . 0 0
...

...
...

. . .
...

...
ÃT−2B̃ ÃT−3B̃ ÃT−4B̃ · · · B̃ 0

 ,

K̃w =


I 0 0 . . . 0 0

Ã I 0 . . . 0 0

Ã2 Ã I . . . 0 0
...

...
...

. . .
...

...
ÃT−2 ÃT−3 ÃT−4 · · · I 0

 .

(16)

The matrices P , Ku and Kw are similarly defined with A
and B instead of Ã and B̃. In addition, we define ∆P :=
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P̃−P and ∆Ku := K̃u−Ku. In the following, we show that
the robust estimates can be essentially obtained by forward
propagation using the nominal state dynamics, i.e., x̂k+1 =
Ax̂k +B(uk + d̂k) with given (x̂0, D̂) and d̂ := vec(D̂).

Definition 2. Let ∆Ω :=
[
∆P ∆Ku K̃ww

]
be an

uncertain matrix belonging to the uncertainty set U(`q,`r) =
{∆Ω : ‖∆Ω‖(`q,`r) ≤ ρ̃}.

Proposition 2 (Robust Estimation of State Sequence). Let
∆Ω and U(`q,`r) be defined according to Definition 2. Then,

given x0 = x̂0, d = d̂ = vec
(

D̂
)

and u, the robust estimate
of X for any q, r ∈ [1,∞] is given by

X̂ = arg min
X∈Rn(T−1)

max
∆Ω∈U(`q,`r)

‖X−P̃x̂0−K̃u(u+d̂)−K̃ww‖`r

= Px̂0 +Ku(u + d̂).

Proof. From (15) and the definitions in (16),

X − P̃x̂0 − K̃u(u− d̂)− K̃ww = X − (Ω + ∆Ω)γ,

where Ω :=
[
P Ku 0

]
, ∆Ω :=

[
∆P K̃u K̃ww

]
and

γ =
[
x̂>0 u> + d̂> 1

]>
. Then, by Theorem 1, we have

X̂ = arg min
X∈Rn(T−1)

max
∆Ω∈U(`q,`r)

‖X − (Ω + ∆Ω)γ‖`r

= arg min
X∈Rn(T−1)

‖X − Ωγ‖`r + ρ̃‖γ‖`q

= arg min
X∈Rn(T−1)

‖X − Px̂0 −Ku(u + d̂)‖`r + ρ̃‖γ‖`q

= Px̂0 +Ku(u + d̂)

since γ is known and ‖z‖`r = 0 if and only if z = 0. �

C. Robust Filtering as a Corollary

In the absence of attacks (cf. Scenario (ii) in Section
V-B.3), the robust and resilient estimator developed in the
previous sections provides an alternative approach to robust
filtering for the following system

xk+1 = Ã xk + B̃ uk + wk

yk = C̃ xk + D̃ uk + vk.

The goal of our robust filter is: Given T noisy mea-
surements y1, · · · , yT−1 and known inputs u1, · · · , uT−1,
we wish to estimate the states x0, · · · , xT−1. Due to space
limitations, details of its derivation will be provided in a
later publication. However, it is not far-fetched to see that
the robust and resilient estimator we developed in Sections
IV-A and IV-B is also applicable as a robust filter even in
the absence of attacks.

V. NUMERICAL SIMULATIONS

A. Random systems

We first compare performances of the `1/`2 nominal
resilient estimator in (9) and the `1/`2 robust and resilient
estimator in Section IV in predicting the randomly chosen
initial state x0 (from a Gaussian distribution with variance
1) on random systems described by (1) of size n = 20
states, m = 5 actuators and p = 20 sensors. The matrices

{B,C,D}, {A,∆B,∆C,∆D} and ∆A have i.i.d. Gaussian
entries with variances 1, 0.01 and 10−4, respectively. For
different numbers of attacked actuators and sensors, we
tested the estimators on 500 random systems with a window
size of T = 30, random initial conditions and randomly
chosen sets of attacked actuators and sensors. The resulting
normalized estimation error for the initial state x0, averaged
over the 500 instances are shown in Figure 1. The results
indicate that the robust and resilient estimators (ρ = {0.1, 1}
and `q = `1) consistently perform better than the nominal
estimator. On the other hand, a higher ρ value decreases
the range of normalized errors and the largest mean value,
but with a slightly higher smallest mean value (compare the
ranges of the color bars in Figures 1(b) and 1(c)).

(a) Nominal `1/`2 estimator

(b) Robust and resilient `1/`2 estimator (ρ = 0.1)

(c) Robust and resilient `1/`∞ estimator (ρ = 1)

Fig. 1. Mean of normalized errors of the nominal and robust `1/`2
estimators (with λ = 0.2, `q = `1) averaged over 500 random systems for
varying numbers of attacked actuators and sensors. A darker shade (note the
different color bar scalings) indicates a higher mean of normalized errors.

B. Electric Power Network

We now demonstrate the effectiveness of our robust and
resilient estimator in Proposition 1 over the nominal estima-
tor (9) using an IEEE 14-bus system [20], [23] that is subject
to data injection attacks. The system, depicted in Figure 2,
consists of 5 synchronous generators and 14 buses. It is
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Fig. 2. IEEE 14-bus electric power system [20]

represented by n = 10 states comprising the rotor angles and
frequencies of each generator. The dynamics of the system
can be represented by an uncertain LTI model (see [24]
for the derivation of the linearized swing equations), that
is discretized with a sampling interval of dT = 0.05s to
obtain the model in (1) with D̃ = 0. Similar to [23], p = 35
sensors are deployed to measure the real power injections
at every bus, the real power flows along every branch and
the rotor angle of generator 1, with the sensor measuring the
rotor angle of generator 1 being protected from attacks.

In the following sections, we will describe the cross val-
idation procedure used to determine the hyperparameters of
our robust and resilient estimator, as well as the simulations
used to validate the effectiveness of our robust and resilient
estimator in Proposition 1 over the nominal estimator in
(9). The estimators are implemented in MATLAB and a
MATLAB interface to CVX [25], [26] is used to solve the
optimization problems. In all our simulations, the initial state
x(0) = x0 and modeling errors (∆A,∆B,∆C, wk and
vk) are drawn from i.i.d. Gaussian distributions, while the
nominal matrices are as in [23].

1) Cross Validation Procedure for Selection of Hyperpa-
rameters: In practice, it is difficult to predict the modeling
errors and noise signals for the purpose of constructing
our uncertainty sets. Thus, it is natural to use a statistical
learning procedure known as cross-validation to determine
the hyperparameters of our robust and resilient estimator –
namely, given some training data, we want to select i) the
tuning parameter λ, ii) the robustification level ρ, and iii) the
estimation approach among our robust and resilient `1/`1,
`1/`2 and `1/`∞ estimators (with `q = `1).

To this end, 200 sets of data (given by the tuple
(x0, y0, y1, . . . , yT−1) are generated with a window size of
T = 15) using a nominal system model with modeling errors
and attack signals drawn from i.i.d. Gaussian distributions,
initial states x0 drawn from the standard Gaussian distribu-
tion, different sets of attacked sensors K of cardinality qs =
3 and different sets of attacked actuators L of cardinality
qa = 1. Subsequently, the data is randomly partitioned into
three sets: allocate 50% for training, 25% for validiation and

25% for testing. The procedure of cross-validation for both
the nominal and robust resilient estimators is conducted in
the following phases:

Training: For each approach (`1/`1, `1/`2 and `1/`∞),
find the best values of λ and ρ for the training set.

Validation: Using the validation set, select the best ap-
proach among the `1/`1, `1/`2 and `1/`∞ estima-
tors with λ and ρ determined in the training phase.

Testing: Determine how well the resilient estimator
(nominal and robust) can predict the values of x0

in the testing set.

When the above process is repeated 20 times, a com-
parison of initial state estimation errors of the robust and
resilient estimator to the estimation errors of the nominal
estimator shows average reductions of 16.92% and 11.68% in
the mean and standard deviation, respectively. Furthermore,
when the intensities of the model errors (i.e., the variance of
the i.i.d. Gaussian distribution from which the error samples
are drawn) are increased by about 2.5 times, a similar cross-
validation study shows decreases of 14.06% and 41.43% in
the mean and standard deviation, respectively, in the initial
state estimation errors.

2) Varying intensities of modeling errors: To observe the
effects of modeling errors on the performances of our estima-
tors, their intensities (i.e., variances of the i.i.d. zero-mean
Gaussian perturbations) are varied while the parameters λ
and ρ are kept constant. For different intensity levels, the
simulations are repeated 100 times with different sets of
attacked sensors K of cardinality qs = 3 and different sets
of attacked actuators L of cardinality qa = 1.
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(a) `1/`1 estimators
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(b) `1/`2 estimators
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Fig. 3. Mean normalized errors of the nominal estimator and the robust
and resilient `1/`1, `1/`2 and `1/`∞ estimators (with `q = `1, λ = 0.2
and different values for ρ) simulated on the IEEE 14-bus system.
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The procedure is repeated for different robust and resilient
estimators (`1/`1, `1/`2 and `1/`∞ with `q = `1) and
compared with the nominal estimators. From Figure 3, it is
clear that the nominal estimators perform the best when the
uncertainty intensity is small. But, as the uncertainty intensity
is increased, the situation is reversed, and a larger ρ (i.e.,
more conservative robust and resilient estimator) leads to
better estimates.

3) Estimation of the Initial State for Different Attack and
Uncertainty Scenarios: Next, we compare the performances
of the `1/`∞ robust and resilient estimator and the `1/`∞
nominal estimator (with `q = `1) for various scenarios: (i)
“attack only” (modeling errors are absent), (ii) “uncertainty
only” (attack signals are absent) and (iii) “uncertainty and
attack” (modeling errors and attacks are present).

The results of 500 simulations are summarized in Figure
4. In the “attack only” scenario, it can be observed that the
nominal estimator performs the best, thus confirming our ob-
servations of Section V-B.2 and validating the effectiveness
of the nominal estimator for known systems in [9]. In the
“uncertainty only” scenario (i.e., the robust filtering scenario
mentioned in Section IV-C), a significant improvement in
performance of the robust and resilient estimator over the
nominal estimator can be observed. The same observations
can be seen in the “uncertainty and attack” scenario. Thus,
we can conclude that our robust and resilient estimator is
more effective than the nominal estimator for estimating the
initial state when there are modeling errors.

4) Estimation of the State Trajectory for Different Attack
and Uncertainty Scenarios: Now that we have obtained the
initial state estimates in the previous section, we proceed to
estimate the remaining states of the state trajectory, using the
approach we developed in Section IV-B. The results of 500
simulations are summarized in Figure 5. As expected, the
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dashed lines represent the support of the data, while the box represents the
median as well as the 25th and 75th percentiles of the normalized errors.
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Fig. 5. Normalized errors of the nominal `1/`∞ estimator and the robust
and resilient `1/`∞ estimator (with `q = `1, λ = 0.2 and different values
for ρ) under different scenarios for the IEEE 14-bus system. The curves
represent mean values and the error bars represent standard deviations.

nominal estimator performs best in the “attack only” scenario
(practically zero for all times), but fares worse than the robust
and resilient estimators in the other scenarios.

5) Choices of `q and `r in Proposition 1: To find the best
values of `q and `r in Proposition 1, we fixed the intensity
of the modeling errors and the attack signal variance, as
well as chose λ = 0.2 and ρ = 0.1. Then, we ran 100
simulations with different sets of attacked sensors K of
cardinality qs = 3 and different sets of attacked actuators L
of cardinality qa = 1 and with different initial conditions x0

and perturbations. In particular, we consider different cases
for the initial state: (i) with i.i.d. zero-mean unit-variance
Gaussian entries (nominal), (ii) with increased variance (in-
creased magnitude), or (iii) with a non-zero mean (offset).

Table I shows the estimate errors of x0 averaged over 100
simulations for these difference cases of x0 and for each
choice of `q and `r from either `1, `2 or `∞. We observe
that the mean estimate error is, with the exception of the
case with an offset, smaller for `q = `1, which coincidentally

TABLE I
MEAN ERROR (VARIED x0 : NOMINAL, INCREASED MAGNITUDE, OFFSET)

`r = `1 `r = `2 `r = `∞
`q = `1 0.314, 0.250, 0.283 0.296, 0.232, 0.281 0.332, 0.226, 0.364
`q = `2 0.330, 0.256, 0.287 0.304, 0.243, 0.275 0.318, 0.236, 0.277
`q = `∞ 0.333, 0.256, 0.291 0.312, 0.246, 0.279 0.322, 0.240, 0.283
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Fig. 6. Performance of the `1/`1, `1/`2 and `1/`∞ estimators (with
`q = `1, λ = 0.2, ρ = 0.1) on the IEEE 14-bus power network with
varying window size T ; error bars depict standard deviations of the errors.

also provides the simplification of the optimization problem
in Proposition 1 to the one in Corollary 1. And for all the
cases with `q = `1, `r = `2 appears to be the best choice.

6) Varying Window Size T : Lastly, we consider the effects
of window size T , i.e., the number of steps/observations that
are used for the optimization problem in Proposition 1. We
fixed the intensity of the modeling errors and the attack signal
variance, as well as chose λ = 0.2, ρ = 0.1 and `q = `1. For
each value of T , we ran 100 simulations with different sets
of attacked sensors K of cardinality qs = 3 and different
sets of attacked actuators L of cardinality qa = 1 and with
different initial conditions x0 and perturbations. From Figure
6, we see that the benefit of increasing the window size is
high initially but little is gained by increasing the window
size beyond approximately T = 9, which is less than the
number of states n = 10. A similar behavior is observed
with the nominal estimator for known systems in [9].

VI. CONCLUSION

We proposed a novel state estimation algorithm that is
both resilient to adversarial attacks as well as robust to mul-
tiplicative and additive modeling uncertainties/errors. Our
approach leverages the equivalence of robustification and
regularization in linear regression by constructing suitable
uncertainty sets that lead to a tractable optimization solution,
such that off-the-shelf convex optimization tools can be
readily applied. Moreover, we obtained a novel robust filter-
ing algorithm (as a corollary) when there is no adversarial
attack without assuming any priors. We also illustrated the
use of cross-validation for determining the hyperparameters
of the optimization problem. Using simulations of random
systems and an IEEE 14-bus power system, we observed
that our robust and resilient estimation approach is effective
for decreasing the state estimation errors.
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