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Abstract

In this paper, we present a unified optimal and exponentially stable filter for linear discrete-time stochastic systems that simul-
taneously estimates the states and unknown inputs in an unbiased minimum-variance sense, without making any assumptions
on the direct feedthrough matrix. We also provide the connection between the stability of the estimator and a system property
known as strong detectability, and discuss the global optimality of the proposed filter. Finally, an illustrative example is given

to demonstrate the performance of the unified unbiased minimum-variance filter.
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1 Introduction

The term filter or estimator is commonly used to refer to
systems that extract information about a quantity of in-
terest from measured data corrupted by noise. Kalman
filtering provides the tool needed for obtaining that re-
liable estimate when the system is linear and when the
disturbance inputs are well modeled by a zero-mean,
Gaussian white noise. However, in many instances, the
exogenous input (e.g., the inputs of other autonomous
vehicles) cannot be modeled as a Gaussian stochastic
process rendering the estimates unreliable. Nonetheless,
we want to be able to estimate the states and inputs
of other vehicles based on noisy measurements for pur-
poses of collision avoidance, route planning, etc. Similar
problems can be found across a wide range of disciplines,
from the real-time estimation of mean areal precipita-
tion during a storm [19] to fault detection and diagnosis
[22] to input estimation in physiological systems [6].

Literature review. Much of the research focus has been
on state estimation of systems with unknown inputs
without actually estimating the inputs. An optimal fil-
ter that estimates a minimum-variance unbiased (MVU)
state estimate for a system with unknown inputs is first
developed for linear systems without direct feedthrough
in [19]. This design was extended to a more general pa-
rameterized solution by [4], and eventually to state esti-
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mation of systems with direct feedthrough in [I3], [5] B].
Similarly, while H, filters (e.g., [28, 27, 20]) can deal
with non-Gaussian disturbance inputs in minimizing the
worst-case state estimation error, the unknown input is
not estimated. However, the problem of estimating the
unknown input itself is often as important as the state
information, and should also be considered.

Palanthandalam-Madapusi and Bernstein [21] proposed
an approach to reconstruct the unknown inputs, in a
process that is decoupled from state estimation with an
emphasis on unbiasedness, but neglecting the optimality
of the estimate. On the other hand, Hsieh [I4] and Gilli-
jns and De Moor [10] developed simultaneous input and
state filters that are optimal in the minimum-variance
unbiased sense, for systems without direct feedthrough.
Extensions to systems with a full rank direct feedthrough
matrix were proposed by Gillijns and De Moor [I1], Fang
et al. [9] and Yong et al. [30]. In an attempt to deal with
systems with a rank deficient direct feedthrough matrix,
Hsieh [15] allowed the input estimate to be biased. Thus,
the problem of finding a simultaneous state and input
filter for systems with rank deficient direct feedthrough
matrix, that is both unbiased and has minimum vari-
ance remains open. Moreover, a unified MVU filter that
works for all cases remains elusive.

Another set of relevant literature pertains to the stabil-
ity of the state and input filters, since optimality does
not imply stability and vice versa. However, to the best
of our knowledge, the literature on this subject is limited
to linear time-invariant systems [3,[8,[9]. Yet another re-
lated literature is on state and input observability and
detectability conditions, also known as strong or perfect
observability and detectability, as this will be shown to
be related to the stability of the filter dynamics for both
linear time-varying and time-invariant systems with un-
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known inputs. Some conditions for state and input ob-
servability were derived in [21], [12].

Contributions. We introduce a unified filter for simulta-
neously estimating both states and unknown inputs such
that the estimates are unbiased and have minimum vari-
ance with no restrictions on the direct feedthrough ma-
trix of the linear discrete-time stochastic system, which
is a generalization of the estimators in the literature,
specifically of [10, 11 B0], and the Kalman filter. Fur-
thermore, we derive sufficient conditions for the filter
stability of linear time-varying systems with unknown
inputs, an important problem that has been previously
unexplored; while for linear time-invariant systems, nec-
essary and sufficient conditions for convergence of the
filter gains to a steady-state solution are provided. The
key insight we gained is that the exponential stability of
the filter is directly related to the strong detectability of
the time-varying system, without which unbiased state
and input estimates cannot be obtained even in the ab-
sence of stochastic noise. We shall also show that the
proposed filter is globally optimal (i.e., optimal over the
class of all linear state and input estimators as in [18]).

In connection to the existing literature, this paper
presents a combination of several ideas from [3| [10] [IT]
and our recent work [30] into a unified filter in a manner
that provably preserves and extends the nice properties
of these filters. However, there are a number of distinc-
tions between our filter and the above referenced filters.
In particular, we show that the state-only filter in [3] im-
plicitly estimates the unknown inputs in a suboptimal
manner and so does the approach for input estimation
n [I1]. In contrast, our filter uses the approaches of our
previous work in [30] and of generalized least squares
estimation, which lead to the desired optimality of the
input estimates. In addition, we gave sufficient condi-
tions for filter stability of linear time-varying systems,
which cannot be carried over from the existing literature
(including [3 10} 11]) for linear time-invariant systems.
Preliminary versions of the results appeared in a con-
ference paper [30] and on arXiv [29] (in which more de-
tails on input and state observability/detectability are
provided and a suboptimal filter variant is described).

Notation. We first summarize some notations used
throughout the paper. R™ denotes the n-dimensional
Euclidean space, C the field of complex numbers and
N nonnegative integers. For a random vector, v € R",
the expectation is denoted by E[v]. Given a matrix
M € RP*4, its transpose, inverse, Moore-Penrose pseu-
doinverse, range, trace and rank are given by M T, M1,
M?T, Ra(M), tr(M) and rk(M). For a symmetric matrix
S, 8 >0 (S = 0) indicates S is positive (semi-)definite.

2 Problem Statement

Consider the linear time-varying discrete-time system

Tht1 = Apxp + Bruy, + Grdy, + wy, (1)
Yy = Crwg + Dyug + Hydg + vg

where x € R™ is the state vector at time k, up € R™
is a known input vector, di € RP is an unknown input

vector, and g € R! is the measurement vector. The pro-
cess noise wy € R™ and the measurement noise v;, € R!
are assumed to be mutually uncorrelated, zero-mean,
white random signals with known bounded covariance
matrices, Q) = Elwyw] ] = 0 and Ry = Efvgv] ] = 0,
respectively. The matrices Ag, By, Ck, Dy, G and Hy
are known and bounded. Note that no assumption is
made on Hj to be either the zero matrix (no direct
feedthrough), or to have full column rank when there
is direct feedthrough. Without loss of generality, we as-
sume that maxy(tk[G} H/!])=p,n>1>1,1>p >0,
m > 0, the current time variable r is strictly nonnega-
tive and zg is independent of vy and wy for all k.

The estimator design problem, addressed in this paper,
can be stated as follows:

Given a linear discrete-time stochastic system with un-
known inputs (1), design a globally optimal and stable
filter that simultaneously estimates system states and un-
known inputs in an unbiased minimum-variance manner.

3 Preliminary Material
3.1 System Transformation

We first decouple the output equation into two compo-
nents, one with a full rank direct feedthrough matrix and
the other without direct feedthrough. In this form, the
filter can be designed leveraging existing approaches for
both cases (e.g., [10, B30]).

Let py, := rk(H). Using singular value decomposi-
tion, we rewrite the direct feedthrough matrix Hj as
SE0] |V «
Hy = [Ul k Uz k} © |, where X, € RPHe XPHy
’ ' 00 V2)T,c

is a diagonal matrix of full rank, U € RIxPHy, Us . €
R U=Pry) [V, € RPXPHE and Vy p, € RPX(P=Pm) while
Uy = [Ul,k UQ’k} and Vi, = [Vl’k VQ’k} are unitary ma-
trices. When there is no direct feedthrough, ¥, U;  and

Vi are empty matriceﬂ, and Uy and V,;, are arbi-
trary unitary matrices.

Then, as suggested in [3], we define two orthogonal com-
ponents of the unknown input given by

dy g = VJkdk, do = Vszdk- (2)

Since Vi is unitary, dp = Vi xdix + Vordor and the
system (1) can be rewritten as

Trpt1 = Arxr + Bruk + GiVikda g + GiVa pda i + wi
= Apxy + Brug + Gl,kdl,k + G27kd27k + wg (3)

Yk = Crxi + Dyug + Hp Vi pdy g + Hip Vo pda i + vg

= Crxr + Druy + Hy pdi g + vk, (4)

where G = GiVig, G = GiVayi and Hyy =
H, Vi ) = Uy 12k Next, we decouple the output y; using

! We adopt the convention that the inverse of an empty
matrix is also an empty matrix and assume that operations
with empty matrices are possible.
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a nonsingular transformation T}, = [TlT o L 2T k]

T — Ika —Ul—lijkUz,k(UQTkRkUzk)il
=

0 Ta—pu)

-
Uik

()
U;:k

to obtain 2, € RPHr and 21 € R!—PH given by

216 = T ey = Crpr + D1gur + Zpdi g + vik (©)

2ok = 1o pyr = Co g + Do pup + v i

where Cl,k = Tl,ka, 027]@ = Tg)ka = U;)kC’k,
Dy = T Dy, Doy := T Dy = UQTka? v =
T kv and vo g = T pvr = U;kvk. This transform is
also chosen such that the measurement noise terms for

the decoupled outputs are uncorrelated. The covari-
ances of vy , and vg i, are

Ry = Evy o] ] = TLeRe Ty, = 0,

)

Rg)k = E[vg’kvzk] = TgykRkTQ—[—k = UQTkRk‘UQ,k >0,

Rigp = E[v1 ks ] = Ty R Ty ), = 0, (7)
Ria, (ki) = IE[?}UCUQTJ-} = Tl,kE[vkv;r]T;,i =0, Vk # 1.

Moreover, vy and vgj, are also uncorrelated with the
initial state xg and process noise wy.

3.2 Input and State Detectability

Similar to the stability of the Kalman filter, we will show
in Section 5 that the stability of the unified filter is di-
rectly related to the notion of input and state detectabil-
ity, a.k.a. strong detectability. Without loss of general-
ity, we assume that By = Dy = 0, since uy, is known.

Definition 1 (Strong detectability@ The linear
system (1) is strongly detectable if

Elyx] =0Vk >0

for all initial states and input sequences {d; }ien.

implies Elzi] — 0 ask — oo

Theorem 2 (Strong detectability (time-invariant))
A linear time-invariant discrete-time system is strongly
detectable if and only if either of the following holds:

zI —A-G

(i) tk P(z):=r1k o

=n+p,Vz € C, |Z‘ >1,

2zl — A —GQ
Ca

where A == A — G1X71Cy. The above conditions are
equivalent to the system being minimum-phase (i.e., the
invariant zeros of P(z) in Condition (i) are stable).

(i) rk =n+p—pn, V2€C |z > 1

2 This definition is a simple extension of strong detectabil-
ity for deterministic systems [12] 25]. Note that strong de-
tectability we defined is not equivalent to exact detectability
B2 B3] (yx =0, Vk > 0 = E|jzx|*> = 0).

Proof. To prove that strong detectability is equivalent
to Condition (i), we first note without proof that strong
observability]® |is equivalent to tk(P(z)) = n+p, Vz € C.
Then, Condition (i) is a simple generalization for the
case that P(z) is rank deficient for some z € Z; C C

=
but |z| < 1. For each such z, there exists [—xz d;} in

the null space of P(z). It can be verified that the input
sequence dj = zFd, and the initial state z, leads to the
output is E[yx] = 0 for all k > 0 but E[zx] = ¥z,
where with a slight abuse of notation, z* represents the
product of any permutations of kK numbers from Z;. Since
|z| < 1 by assumption, E[z;] — 0 as k — oo. To relate
Conditions (i) and (ii), we use the following identity:

nTPERL 4 i e U{gg]VT
=tk S0f T

0T C U[OO}V oV

(21— A —QV 2zl — A—-G1 —Gq

rk »ol| =tk | C; > 0
T TU
[0 0} Cs 0 0

1a,x 10| [21-4A-G, -Gy
=tklo 1 o] ¢ = o0
o o I|| ¢ o0 o

20— A0 —Gs .
I-A-G
—k| ¢, ¥ 0 | =1k ZC 02 +pu
Cy 0 0 2

for all z € C, where the final equality holds because ¥ is
square and has full rank pg. [ |

4 Minimum-Variance Unbiased Filter for Si-
multaneous Input and State Estimation

For the design of the Unified Linear Input & State Es-
timator (ULISE), we consider a recursive three-step fil-
tetm as in [111 B0], composed of an unknown input esti-
mation step that uses the current measurement and state
estimate to estimate the unknown inputs in the best lin-
ear unbiased sense (i.e., the minimum-variance-unbiased
among the class of linear estimators), a time update step
that propagates the state estimate based on the system
dynamics, and a measurement update step that updates
the state estimate using the current measurement.

Given measurements up to time k, the three-step recur-
sive filterl®] can be summarized as follows:

3 Strong observability is a stronger condition than (and im-
plies) strong detectability. Due to space limitation, the reader
is referred to [29] [26] for its definition, properties and proofs.
4 Note that the restriction to a recursive filter will be relaxed
and shown to not lead to suboptimality in Theorem 4.

® To initialize the filter, arbitrary initial values of Zojo, Pg”lo



Unknown Input Estimation:
dip = My g (210 — CrrZye — D1 gur) (8)
dy g1 = Mo g(za0 — CoxZpp—1 — Dogur)  (9)
dpy = Vl,k—ldl,k—l + VZ,k—ldAQ,k—l (10)

Time Update:
Tpip—1=Ap—1Zp_1|k—1 + Br_1up—1 + Gi1dy r1(11)
T = Trp—1 + Gop—1d2,k—1 (12)

Measurement Update:

-%k|k = ‘%Z\k + Lk(yk — Ck.%zlk — Dkuk)

= i'z\k + Ek(ZZ,k - C2kf2|k — ngkuk) (13)

where Tp_1jk—1, dy -1, d2,;—1 and dj_1 denote the op-
timal estimates of xr_1, di k-1, dox—1 and dg_1; Ly €
R Ly = LyUsy € R™UZPHO) M,y € RPHXPH,
and My € RE—Pu)x(=Pr,) gre filter gain matrices
that are chosen to minimize the state and input error co-
variances. Note that we applied Ly, = LUs 1, U;:k in (13),
which we will justify in Lemma 8. Algorithm 1 summa-
rizes the three steps of ULISE, in which the estimation
of dy ;1 is carried out before the time update, followed
by the measurement update and finally, the estimation
of d; . Note that Algorithm 1 is given with significant
simplifications and a particular choice of 'y, that will be
further expounded in Section 5. An even more simplified
version of ULISE is given in [31], Algorithm 1].

The proposed unified filter simultaneously estimates the
unknown inputs and states for systems with an arbi-
trary direct feedthrough matrix; thus it relaxes assump-
tions on the direct feedthrough matrix in [10 111, 30]. By
a suitable system transformation given in (5), the un-
known input is decomposed into two components, d; j
and d» 1, and similarly, the output equation into two or-
thogonal projections, z; ; and 23 1, one with no direct
feedthrough and the other with a full-rank feedthrough
matrix. Hence, the d; ; component of the unknown in-
put can be estimated in the best linear unbiased sense
by choosing M; , as in [30] and the ds , component by
choosing My, as in [10]. Moreover, the gain matrix Ly,
is chosen to minimize the state estlmate error covariance
in an update similar to the Kalman filter. In fact, the
proposed filter can be shown to be a generalization of
the Kalman filter to systems with unknown inputs and
other filters in existing literature, e.g., [19} 10, 111 [3] B30].
The proof is omitted for brevity (cf. [29]).

Moreover, ULISE possesses some nice properties,
given by the following lemma and theorems which
will be proven in Section 5. To state these claims,

and czl,o can be used since we will show that the filter is
exponentially stable in Theorems 5 and 6. If yo and uo are
available, we can find the minimum variance unbiased initial
estimates given in the initialization of Algorithm 1 using the
linear minimum-variance-unbiased estimator [24].

Algorithm 1 ULISE algorithm

1: Initialize: P, = P§ = (C3,0R55C2,0) " ; Zojo = Elzo] =
P§ioCa Ry 0(220 — Dajouo); Ao = Ag — G105 "' Cho;
Qo = Gl,ozalRl,ozglGl 0 + Qo; dio = X5t (2‘10 -
C1,0%0/0 — D1,ouo); Pito = S5 ' (Ch, OP()‘OCl o+ R1,0)%; ;
for k=1to N do
> Estimation of da ;-1 and di—1

ﬁk = Ak_1P§71|k71A2_1 + Qk—1§

R2,k = Cz,kﬁkczk + Ro ks

Py = (G 102Tk1~%2711€02kG2,k—1)71;

My = Py 1Gg 1C2kR2k»

$k|k 1=Ap1Zp_1jk—1 + Br_1ur—1 + G1p— 1d1,k71§

d2k 1= Mo k(z2k—C2k$Uk\k 1 — Do rug);

di—1 = Vi g—1di -1 + Vo p—1dz - 1,

10: P12k 1= M g-1C1k—1 P 1\k 1A 1CQkM2k
—Pl 1 G 1 CF My

Py Py

- k- T .
d Vk*h
P12k 1 Pokq

N

11: P, =Vi,

> Time update

12: §:2|k = fk\k—l + G2,k71d2,k71§

13: P = Ga k-1 Ma k Ro . My G

+(I*G2,k—1M2,kCQ,k)PIc(I*GQ,k—lMQ,kCQ,k)T;

14:  Rj = CwPYiCy + R — CkGag—1Ma 1 Uj R
—RkUg,kM;kG;k_le;

> Measurement update

15: Kk = P,:‘”;C,: — Gg,kflngkUZkRk;

16: My, =S (U Ry UL ) P U L Ry

170 Ly = Kp(l = Ur w5 M7 y) T RETS

18: Tk = Tk, + Li(ye — Okityyy, — Diur);

19: Py = — LiCx)Ga k1 Ma xUs  Ri Ly
+LkRkU27kM;kG;k_1(I — chk)T
+(I — LiCr) P (I — LkCy) " + LiRi Ly

> Estimation of di i

20: Rl k= C1 kPlglkCIk + Rl,k§

21: M1 k= E,: 3

22: Plk*Ml le ]ch ks

23: dig =M p(z16 — Crelpip — D1 rur);

24: Ap = Ay — G, M1 xChk;

25: Qr = G1e My iRy oMy G i + Qs

26: end for

we first define: Mgk = (Cg,ng’k,l)T, Or = Qi +
GipXy 'Ryt ’ le, Ay = Ay — GipMyiCiy,
Ay == (I = Ga o1 M2 s Cs, k)Ak + Goj—1 M Cs, and
Qk—(I G 1Mo Co 1) Qp1(I—Ga 1 My Cop) "

Lemma 3 Let the initial state estimate oo be unbiased.
Ifrk(Co kG2 k—1) = P—PH,_, , then the ULISE algorithm
giwen in Algorithm 1 provides the unbiased, best linear
estimate in the mean square sense of the unknown input
and the minimum-variance unbiased estimate of states.

Theorem 4 (Global Optimality) Let the initial state
estimate Zg)g be unbiased and rk(CorGagr-1) = p —
pr,_,- Then, the ULISE algorithm is globally optimal



(over the class of all linear state and input estimators).

Theorem 5 (Stability) Let rk(Cs 1 Gar-1) = p —

PH,_,- Then, that (Ak’CQ,k-) s uniformly detectabl

is sufficient for the boundedness of the error covariance
- L1

of the ULISE algorithm. Furthermore, if (A, Q}) is

uniformly stabilizablﬂ ULISE is exponentially stable
(i.e., its expected estimate errors decay exponentially).

Theorem 6 (Stability (linear time-invariant)) Let
tk(C2G2) = p — pr. Then, that (A, Cs) is detectable is
sufficient for the boundedness of the error covariance of
the ULISE algorithm. Furthermore, if A7Q%) 18 stabi-
lizable, ULISE is exponentially stable (i.e., its expected
estimate errors decay exponentially). In addition, with
Pg‘lo = 0, the filter gains of ULISE converge to a unique
stationary solution, PZ = 0 (cf. Lines 3, 13, 19 of Algo-
rithm 1 with Py = By’ 4, = PZ ), if and only if

(i) The linear time-invariant discrete-time system is
strongly detectable, i.e., Theorem 2 holds, and

A*@ijGQ QA% 0

. 1
CJWCQ

1) rk
(i) 0 0 R:

=n+l—py,Yw € [0,27].

Remark 7 Note the parallels of the convergence and sta-
bility conditions above (i.e., strong detectability and a
rank condition on the unit circle) to the conditions for the
Kalman filter (i.e., detectability and controllability on the
unit circle). Conversely, without strong detectability, it
is not possible to obtain unbiased estimates of the states
and unknown inputs even for the case with no noise.

5 Filter Description and Analysis

For the analysis of the proposed filter, let Ty = x5 —
i’k|k> jz\k = xk—i'zllw dk = dk—dk, Plf|k = E[fik‘ki‘;lk],

P = Eliydil, B = Elddy] and P, =
(Péilvk)—r = E[dl,kd;kL as well as di,k = di,k — di,k7

Pﬁk = E[di,kdzk] and ij,‘f = (Pfi)T = E[ikwdz—'l?k]v
for ¢ = 1,2. We first present a lemma that summarizes
the unbiasedness of the state and input estimates for all
time steps that is one piece of the claim in Lemma 3.

Lemma 8 Let &g = 9?:6‘0 be unbiased, then the input

and state estimates, (Zk_l, jZ\k and Ty, are unbiased for
allk, zfand only ifMlyka = I, MQ’kCQ’k;GQ’kfl =TI and
LUy = 0. Consequently, tk(Ca kG2 k—1) = p — pH,_,
and Lk = LkUQ,kUQTk-

Proof. We observe from (6), (8) and (9) that
dyj, = My (CrpZp| + Lpdi g + v1k) (14)
dog—1= Mo p(Cop(Ap—1Zp_1j—1 + Grr—1d1x1
+wp—1) +vok + CokGog—1d2k—1). (15)

5 For brevity, the readers are referred to [I, Section 2] for

the definitions of uniform detectability and stabilizability. A
spectral test for these properties can be found in [23].

From (11) and (12), as well as (4) and (13), the propa-
gated and updated state estimate errors are

Thy = Ak—1Zp—1p—1 + G r—1d1 k-1
+Go k—1d2 k-1 + Wk—1
fk\k = (I - chk)iZ\k — LkUl,kEkdl,k - Lkvk. (17)

(16)

We show by induction that the estimates dp, Ty and
jzlk are unbiased. For the base case, since oo and 538\0
are unbiased and the process and measurement noise
are assumed to have zero mean, E[w] = 0, E[vg] = 0,
from (14) and (15), we find that E[di o] = dio and
Eld2,0] = da2,, i.e., dio and dao are unbiased, if and
only if Ml,OEO = I, and MQJCQJGQ)Q = 1. Hence,
dp is unbiased. In the inductive step, we assume that
ElZg_1p-1] = EW?HH] = 0. Then, the input es-
timates are unbiased, ie., E[dy_y] = E[JLk_l] =
Eldex—1] = 0, if and only if M; ;13,1 = I, and
My 1,Cs G2 -1 = I. Since the process noise has zero
mean, by (16), E[Z} ;] = 0. Similarly, from (17) with a
zero-mean measurement noise, we impose the constraint
LUy, = 0 such that we obtain E[Z;,] = 0. Therefore,
by induction, E[Z},] = 0 and E[Zy] = 0 for all k.
Since we require Ms ;Cy G2 ;-1 = I for all k for the
existence of an unbiased input estimate, it follows that
tk(C xG2,x—1) = p—pH,—1 is a necessary and sufficient
condition. Furthermore, L, = LkUkU,;r = LkUg,kU;k
since LUy 3, = 0. [ ]
Next, we continue the proof of Lemma 3 in three subsec-

tions, one for each step of the three-step recursive filter.
Then, we present the proof of Theorems 4, 5 and 6.

5.1  Unknown Input Estimation

To obtain an optimal estimate of dj,_ using (10), we esti-
mate both components of the unknown input as the best
linear unbiased estimates (BLUE). This means that the

expected input estimate is unbiased, i.e., E[(ilk] = dy k,

]E[czzk] = da , and ]E[czk] = dj, as was shown in Lemma
8, and that the mean squared error of the estimate is the
lowest possible, shown next in Theorem 9.

Theorem 9 Let Zg ¢ = iglo be unbiased. Then (8) and
(9) provide the best linear input estimate (BLUE) with

Mi,=31 (18)
My = (Gg 4 1Cy Ry 1.CokGa 1) "Gy 1Co xRy
(19)

while the input error covariance matrices are
d _yv—1p -1
Pl,k- =X Rikdy
d (T T p-1 -1
P2,k—1 - (GQ,k—102,kR2,k02,kG2J€*1)

where we have defined P, = Ak,lplf_l‘k_lfl;_l +
Qk—l; Ak = Ay — Gl,le,k’Cl,k; Qk = Qr +



GriMy Ry MGy Ry = CrrPiCT ) + Rug
and Rg’k = CQ}kPkCsz. + Rg,k.

Proof. Let z1 ;= 211 — C1 kZpp — D1 gug and 2o, 1=
2ok — C’gykik“ﬁ_l — D3 pug. Then, we have

Z1k = Ypd1g + €1k, (20)
Zogk = Co xGo—1da -1 + €2k, (21)
where we defined ey = CipZpr + v1,k and ey =

Cok(Ar—1Tp_1jp—1 + Gri1dip1 + wp_1) + Vo
From the unbiasedness of the state and input estimates
(Lemma 8), Ele1 ] = 0 and E[ez x] = 0. It can be ver-
ified that their covariance matrices, Ry ) := E[elykezk]
and Ry = Elespes ], are as given in the theo-
rem statement. Next, we obtain the estimates for dALk
and dq i, given by (8), (9), (18) and (19) by applying
the well known generalized least squares (GLS) esti-
mate (see, e.g., [24, Theorem 3.1.1]), which are linear
minimum-variance unbiased estimates, a.k.a. as best

linear unbiased estimates (BLUE). Note that since Xy
is invertible, there is one unique unbiased estimate of

dy 1. Since M ;%) = I and My xCo 1 Gop_1 = I, the

input estimate errors, and their covariance matrices are

dQ,k—l = =M peay,

P =E[dy xd{ ;] = My rEleyref ()M =S 'Ry p Sy

Pzd,k—1 = E[JZ,k—lcg,k—l] = MZ,kE[GZkBQT,k]MQT,k (22)
= (G105 xRy 1 CokGa—1) .

dy i, = =M ek,

Next, we note the following equality:

Zl’k] {dl,k Jg,k] 17A0))

2,k

tr(E[did) |) = tr(E[V

(23)
(1 da i ]]) = tr(PL,) + tr(PS,).

d
= tr(V,] ViE] gl’k

2,k

Since the unbiased estimate of cfl’k is unique (albeit
at a different time step), we have mintr(E[dyd]]) =
tr(E[decZIk]) + mintr(E[(igykd;k}), from which it can
be observed that the unbiased estimate cZk has minimum
variance when 0?1,1@ and Cig, 1 have minimum variances. ®

5.2 Time Update

The time update is given by (11) and (12), and the prop-
agated state estimate error covariance matrix is

T
T T xd xd T

Ak*l Pk—1|k—1 Pl,kfl P2,k71 Akfl
*L T xd T d d T

Pk\k - Gl,k*l Pl,kfl Pl,kfl P12,k71 Gl,k*l
T xd T dT d T

GQ,k—l P2,k—1 P12,k—1 P2,k—1 G2,k—1

+ Q-1 — G2,x—1M2,,C2 1 Qr—1 — Qkflc;,kMZT,kG;r,k—b

Alternatively, using (22), (18) and (19), the above ex-
pression can be reduced to

ik = — Go g1 M 1,Co 1) P(I — Go 1Mo xCo )"
+ GQ,k—lMQ,kRZ,kMQTkG;k—l (24)

where we applied Ly = LkUQJgUQ—l: , from Lemma 8 and

Ty xRy Ty}, = 0 from (7), and where My j and Py are as
defined in Theorem 9.

5.3 Measurement Update

In this step, the measurement gy, is used to update the
propagated estimate of &}, and Pjj. From (4) and
(13), the updated state estimate error is given by (17)
where the constraint L,U; , = 0 (Lemma 8) must be im-
posed for all k£ such that the state estimate is unbiased
(E[Zg|x] = 0) for all possible dj , since ¥y has full rank.
Note that the residual /innovation term in the measure-
ment update step given in (13) appears to not contain
an Hydj, term as would be expected. This term is actu-
ally present, but has been nullified by the unbiasedness
constraint (Lemma 8), since Ly Hy = LkULkEkVJk =0.
This is also in line with the practical reason that the
unknown input estimate is not yet available. Next, the
covariance matrix of the state error is computed as

Pl = (I = LiCr) P (I = LiCh) T + LRy L]
+(I — chk)GQak_lMlkUQTkRkLz

(25)
—|—L;€RkU27kM2TkG2T’k71(I — chk)T
= Py + LpRE L) — LS — SpLy]
where E[i},vi] = —Goj—1M Uy, Ry, and we de-

fined Ry := Cy P50 + Ry — CyGa1 Mo Uy Ry, —
RkUg,kM;kG;kfleT and Sy, := _GQ,k—lMQ,kUQTkRk_F
P,:@C,j . Using (24), we can rewrite the expression R} =

NkRkaT where Rk = CkPkaT + Rr and N := I —
CrGa k-1 MUy .

To obtain an unbiased minimum variance estimator, we
derive the optimal gain matrix Lj, by minimizing the
trace of (25), since the trace represents the sum of the
estimation error variances of the states, subject to the
constraint LUy ; = 0. However, the next lemma shows
that R} = NyRi N, is singular because Ny is rank de-
ficient, except when p = pg, , i.e., Hy has full rank.

Lemma 10 Consider My, that satisfies (19), then Ny,
has rank pr :=1—p+pu,_, andpu, , <pr <I.

Proof. Since My, satisfies (19), N is an idempotent
matrix, i.e., NyNp = Nj. From [2| Fact 3.12.9 and
Proposition 2.6.3] and rk(Cs G2 k—1) = P — PH. 1>
we obtain pr = rtk(l; — CkGQﬁk_lMQ’kUQJC) =
[ — rk(CkG27k_1M27kU27k,) =1 —p+ka71 S [. Since we
assumed [ > p, we have py, | <pr <L [ |



Hence, the optimal gain matrix L; is in general not
unique. Similar to [I0], we propose a gain matrix Lj, of

the form L = LI, where I'j, € RPRX! ig an arbitrary
matrix which has to be chosen such that Ty R;I'] has

full rank. With this, we compute the optimal gain Ly
and thus Ly in the following theorem.

Theorem 11 Suppose Tgjg = ia\o are unbiased, and let

Iy € RPRX! be chosen such that FkR;F; has full rank,
where pp =1l —p+pu,_,. Then, the minimum-variance
unbiased state estimator is obtained with

Ly = KRy (I, — Hy M7 y) = Kie(L — Hl,kak)TRk
(26)

where Ky := (PO = Gap1 Mo yUj  Ry) = (PO —
Gog1 Mz Uy (RN, R = TU(TWRT]) Ty,
Hy = Ur xSy and My, o= 5 (U] RpUy ) 72U Ry,
with My, and Py as defined in Theorem 9, and Rk and
R as defined in the text following (25).

Proof. By Lemma 8, the state estimates are unbiased.
We then employ the optimization approach with La-
grange multipliers (A € R™*P#) in [19] 1], [30], to ob-
tain the optimal gain Ly, in (26) that minimizes the trace
of of the covariance matrix P,f‘k, while being subjected

to the constraint LUy j, = 0, which is a necessary con-
dition for obtaining an unbiased estimate. [ |

One choice of Ty, (first proposed in [4] using the singu-
lar value decomposition of R;%C’ngvk_l = Uki}kf/kT)
such that FkR;FkT has full rank, is given by I'y =
[O IpR] U, R;%, where Ry and R} are defined in
the text following (25), and pg = | — p — pu,_,-
With this I'y, we obtain Iy RfI'} = I,, which is in-
vertible. Following the procedure in [4, Appendix],
(26) reduces to Ly = Ki(I; — Hlyle*yk)Tl%gl, with
M, = S NU{ R NGUL) U RNy, which i
independent of U, and as such, the “expensive” singu-

lar value decomposition step can be bypassed. Another
choice would be to use the Moore-Penrose pseudoin-

verse (1) such that R, = (R})! in (26). Moreover, we

_ 7T
| = L;€U27,C where we
2,k

defined Ly, := LyUsx = Ki(I) — Hy 1 M )T Ry Us.

Uy,
have Ly = Ly Uy i Us ] o

In addition, we can compute the (cross-)covariances as

Pir,% = (Pﬁi)T = _PﬁkCIkMIk
Pzz,iq = (Pzd,gfcﬂ)T = *Plf—1|k—1A;cr—1C2T,kM2T,k
— P 1 G 1o My,
P1d2,k—1 = (1D2d1,k—1)T = _P{i,gfe—lA;—lcng;k
=P 1 G 1 Co My,

d d
Pl,k P12,k

d d
P21,k PQ,k

-
Vik

Pi= [Vl,k: V2,k} VT
2,k

5.4 Global optimality of ULISE

In the following, we relax the recursivity assumption of
ULISE for both the state and input estimates and con-

sider 3, and czk to be the most general linear combina-
tion of the unbiased initial state estimate Zg)o, Z1 % =

T T
T T T — |, T .7 T
[ZLO 299 - zl’k} and 25, = [2270 Zoq - 227,@} . We

first prove that the state update of ULISE has the same
optimal form as the filter proposed in [3, Remark 3],
through which the claim of global optimality of the state
estimate over the class of all linear estimators follows
from [I§]. Then, we prove the global optimality of the
input estimate, which completes the proof of Theorem 4.

Proof of Theorem 4. To this end, we rearrange the lat-
ter form of (13) of state estimation for ULISE with un-
known inputs estimated with (8) and (9), to obtain

Eppe = Ap—1@p1jp—1+Bro1uk—1+G1 o1 M1 g—121 51
+ Ki(z2k — CQ,k(Ak—ﬁqu\kq + Br_1uk—1
+ G 1M1 g—1216-1)) (27)
Ki=Gop 1Moy + Li(I — Ca.Ga g1 Ma ) (28)

where Ak,1 = Ak,1 - GlykflMkachk,h as previ—
ously defined. Repeating the procedure in Section 5.3,
we obtain the optimal gain and the updated state esti-
mate error covariance as

~ ~ ~ 7T P ~ 7T —

Ly = (Pk)CQTk — Gop-1MsRo )N (NpRo x N )~ 'Ty,
— R — — T

Pkm\k = (I — KkCQJC)Pk(I — KkCQ’k)T =+ KkRQ,kKk

Wher§ N}G = fk(.[ : C’Q’]CCTVQArkfl.Z\fz’k)7 Rz’k =
CQ)kPkC;: i + R2 and I'y, is an arbitrary matrix such
that NkRQkN; has full rank. Thus, the ULISE’s state
and state covariance update is almost identical to [3], in

which only state estimation is considered. The only dif-
ference is in the choice of My j,, where M, j is replaced
by Msj := (C2xG2x—1)" in [3]. More importantly, the
state update law is of the optimal form [3, Remark 3]

from which the global optimality of the state estimate
over the linear class of estimators follows from [I§].

To show that the input estimate is also globally opti-
mal, we consider the input estimate dj,_; to be the most
general linear combination of the unbiased initial state

.
estimate Zgo, as well as 2y, = [leo 2q ... lek] and

S s s o T : s s
2ok = [2210 299 - zlk] . Since Z; ; and 23 ; as defined

for (20) and (21) are linear combinations of g9, Z1,;
and Z5 ;, and of Zojo, Z1,i—1 and 2y ;, respectively,



d)_y = xo(k)Eoj0 +30y x1,i(k)Z: + S5y X2i(k) 2.

Clearly, if x1x-1(k) = Vig—1Mi,—1 and xor(k) =
Vog—1Ma s, where Mj 1 and My are as in (18)
and (19), and if xo(k), x1k(k), {x1:(k)};5 and
{x2.i(F)}* =} are zero, then dJ_, is unbiased. To show
the converse, we suppose that ciz
E[CZi71] = Vl)kfldl)kfl + Vg,k,ldgﬁkfl. Since dj can
take on any arbitrary value and z j, is a function of dy ,

_, is unbiased, i.e.,

X1,k (k) = 0 such that cii71 remains unbiased. Moreover,
the first measurements containing d; »—1 and dy 11 are
21,k—1 and zo i, then E[x1 x—1(k)Z1 k—1] = Vi k—1d1 k-1
and E[xox(k)Z2r] = Vaok—1dar—1. Consequently,
X1,k-1(k) = Vi g1 My x—1 and x2x(k) = Vaor—1Ma .
Moreover, for cii71 to be unbiased, xo(k) = 0,
{Xl,i(k) 5;02 =0 and {Xg}i(k)CQ’iGg,ifl}f;Ol = 0 must
hold. Finally, we prove that the mean squared error
E[||dx_1 — d?_, ||3] is minimized when {x2;(k)}*=} = 0.

From the unbiasedness conditions of dj ;, we have

dk,1 — Jg—l = CZ]C,1 — Zf;()l Xg’i(k)ég’i where CZ]C is
as defined above Lemma 8. Since it is straightfor-
ward to verify (as in [I8) Lemmas 1 and 2]) that

E[dy(x2.i(k)Z2:)T] = 0 for all i < k, it follows that

— iy 13) = or{E[(dk1 — 750 2 (k)z2)
(s =300 xea()22.) ]}
I} Bl 85 Xz (k) 22a3)

where the first term is minimized by ULISE as is shown
n (23) and Theorem 9, while the latter term is mini-

Ellldx—1

= tr{E[d_1d, _

mized when Zi:ol X2,i(k)Z2,; = 0, which occurs when
{x2.i(k)}iZy =0, as desired. Thus, Theorem 4 holds. m

Remark 12 ULISE provides a family of optimal state
estimators parameterized by T'y, while the filter in [3] pro-

vides a specific solution with N, as the left null matriz of
CoxGa, i.e., N = Null((C2,xG2x)") . More impor-
tantly, we have shown that the decorrelation constraint
assumed in [3], such that only zsy can be used in the
state update to avoid obtaining a suboptimal estimator,
is justified as a direct consequence of the unbiasedness
constraint in Lemma 8, i.e., LUy = 0.

5.5 Stability of ULISE

In this section, we prove the stability of the ULISE filter
by first reducing the linear time-varying system with un-
known inputs to an equivalent system without unknown
inputs. Then, we use existing results on the stability of
the Kalman filter [I, Section 5] to obtain the sufficient
conditions for the stability of the original system.

Proof of Theorem 5. We begin by reducing the system
with unknown inputs to one without unknown inputs.

From (13) and (6), we obtain &y, = 9~C2|k_ik(c2,k552|k+

v2.k). Then, substituting (22) into (16) and the above
equation, and rearranging, we obtain

Tpe = Ap-1Zp—1jp—1 + W1 — Lie(Co g Ap—1E—1j5-1
+ Co kWi—1 + V2,1)s (29)

where Zk—l = (I — G27k_1M27k02,k)Ak_1 and Wi_1 =
—(I - G2 k—1M2 1.Co 1) (G k-1 My p—1V1 -1 — We—1) —
Ga k-1 M3 va k. As it turns out, the state estimate error
dynamlcs above is the same for a Kalman filter [17] for a
linear system without unknown inputs: 2, = kai +
Wi; Yy = Ca k2], +v2 k. Since the objective for both sys-
tems 1s the same, i.e., to obtain an unbiased minimum-
variance filter, they are equivalent systems from the per-
spective of optimal filtering. However, the noise terms of
this equivalent system are correlated, i.e., E[wgv, ] =
—Glg -1 M3 ;R ;. To transform the system further into
one without correlated noise, we employ a common trick
of adding a zero term —G 1 Mo 1, (y5. — Co x5 —v2 &) tO
obtain: zf | = flkaci—l—ﬁk—&—ﬁ}k; Yy = Co xxf+vs i, where
Ay = Ap + Gop 1M1 Co iy U = —Gao 1 Ma 1y is a
known input and Wy, = Wy, + G2 -1 Ma V2 k. The new
noise terms wy and vg j are uncorrelated with covari-

ances C:Zk = Elww, | = (I—G2)k,1M2’k02,k)QAk,1A<I—
G27k71M2,kCQ)k)T, Rg,k and E[zﬁkv;k] = 0, where Qk,1
and My j are as defined in Theorem 9.

Ideally, if we can compute A and @ prior to ap-
plying the ULISE algorithm, then the uniform de-
tectability and stabilizability conditions of [I, Sec-
tion 5] can be directly applied to obtain the de-
sired stability property. However, this is not the
case as these matrices depend on Py 1lk—1 which

is not available a priori. Thus, we substltute Moy g,
in (9) with Mop = (CoxGo k- 1)T to obtain A; :=
(I —Ga 1Mo ,Cs, k)Alc 1+ Ga o1 Mz xCa i and Q=

(I —Gop1 M40 1)Qx_1(I —Ga g1 My xCo ). This
removes the dependence on P ;. ; from the uniform

detectability and stabilizability tests in Theorem 5.

From [I, Lemma 5.1 & Corollary 5.2], if (A, Cy) is
uniformly detectable, then the corresponding filter error

covariance P,fl’,:ub is bounded. By the optimality of the
ULISE algorithm, it follows that the ULISE error covari-
ance P,fl . and the filter gain L, are bounded. Next, by [1}

Theorems 4.3 & 5.3], the uniform stability of (Ap, Qé)
and the boundedness of Ly imply that the filter (with

Ly, but with My j, in the input estimate) is exponentially
stable. Finally, using the fact that the ordinary and gen-
eralized least squares input estimates have the same ex-
pected value (see, e.g., [7, pp. 223-224]), it can be verified

from~(29) thaf ElZg] = (- LkCQ k) A 1 E[T)_ k—1] =

(I = LxCy k) Ag—1E[Tp—1)1—1], from which it follows that
the uniform stability of (Ay, Q%) and the boundedness
of Ly, also imply that ULISE is exponentially stable. m



Next, we consider the time-invariant case, for which uni-
form detectability and uniform stabilizability reduce to
standard definitions of detectability and stabilizability
[23]. Thus, the sufficient conditions of Theorem 6 follow
directly. In addition, noting the similarity of ULISE to
the state estimator in [3] and that the conditions given

in [4] is independent of the choice of My j, or Mgk, it can
be shown that the convergence and stability conditions
are as given in Theorem 6.

6 Illustrative Example

In this example, we consider the state estimation and
fault identification problem when the system dynamics
is plagued by faults, di, as well as zero-mean Gaussian
white noise. Specifically, the linear discrete-time prob-
lems we consider are based on the system given in [3]
with three different H matrices to illustrate the effect of
parameter changes on filter performance:

052 0 0 0] 10-0.3
0021 0 1| B=0sx1; 10 0
A=10 0030 1|;C=1Is; G=100 0 |;
0 0 007 1| D=0sx1; 00 0
0 0 0 00.1] 00 0

10 000] 1 00050
010500 0 10003
Q=10""1005100[;R=102l0 010 0|;
00 010 05001 0
00 0O01] 00300 1
001 001 000
000 000 100
H'=|o10|; H>=|o10|; H®=|010
000 000 001
000 100 000

The unknown inputs used in this example are as given in
Figure 1. With the above H matrices, the invariant zeros
of the system (cf. Theorem 2) are respectively {0.3,0.8},
{0.1,0.3,0.5,0.7,0.8}, and {0.1,0.7,0.3,—0.8,0.35
Thus, all three systems are strongly detectable. More-
over, H? and H? are full rank.

To illustrate the performance of the unified simultaneous
input and state estimators, measured by the steady-state
trace of the error covariance matrices, we compare the
performance of the following filters: (i) Cheng et al. filter
[3], augmented by implicit estimates the unknown input,
i.e., using (8) (with My ) and (9) (CYWZ), (ii) ULISE
from Section 4, as well as the filters for systems with full-
rank H matrix: (iii) Gillijns and De Moor filter (GDM)
[11], (iv) Fang et al. filter (FSY) [9] and (v) Yong et al.
filter (YZF) |30]. The simulations were implemented in
MATLAB on a 2.2 GHz Intel Core i7 CPU.

Figures 1 and 2 show a comparison of the input and
state estimates as well as the error covariances of the
first two MVU estimators for the system with H!. In

10 2
5 1
& g
) T1 - @-g{YWZ | HGULISE ) Ty -8 -gGYWZ g GULISE
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i 1
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05 o 200 400 600 800 1000
0 200 400 600 800 1000
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2
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Fig. 1. Actual states x1, z2, 3, T4, 5 and their estimates,
as well as unknown inputs di, d2 and ds and their estimates.

10" 10"
—~ “e-cYWz — -a-CYWZ
Lok v ULISE S ls v ULISE
g 10 £10
107 107°
0 200 400 600 800 1000 O 200 400 600 800 1000
Time, k Time, k

Fig. 2. Trace of estimate error covariance of states, tr(P®),
and unknown inputs, tr(P?).
Table 1

Steady-state Performance of CYWZ, ULISE, GDM, FSY
and YZF.

P | P35 | P§y | Piy | Pgy Ph | P | Py

CYWZ|0.1843|0.0091|0.0002 |0.0004 [ 0.0001 || 0.0099|0.0102 |{0.1923
ULISE | 0.1843|0.0091 [ 0.0002 |0.0004 | 0.0001|{0.0099|0.0102{0.1923
GDM || N/A | N/A | N/A | N/A | Nja || Nja | N/a | Ny

FSY N/A | N/A | N/A | N/A | N/A || N/A | N/A | N/A

YZF N/A | N/A | N/A | N/A | N/A || N/A | N/A | N/A

CYWZ|[0.1494|0.0052 | 0.0002 | 0.0004 | 0.0001 || 0.0097|0.0102|0.1574
ULISE (| 0.1494 (0.0052|0.0002 | 0.0004 | 0.0001 || 0.0097|0.0102 |0.1574
GDM 0.1494(0.0052|0.0002 | 0.0004 [ 0.0001 || 0.0097|0.0102|0.1574
FSY 0.1724(0.0108|0.0002 [ 0.0004 | 0.0001 || 0.0097 [ 0.0102|0.1648
YZF 0.1494(0.0052|0.0002 | 0.0004 [ 0.0001 || 0.0097|0.0102|0.1574
CYWZ|[0.0076 {0.0218|0.0002|0.0004|0.0001 [|0.0309|0.0102 |0.0097
ULISE (| 0.0076 {0.0218|0.0002 | 0.0004 | 0.0001 || 0.0309|0.0102 |0.0097
GDM 0.00760.0218|0.0002 [ 0.0004 | 0.0001 || 0.0309(0.0102 |0.0097
FSY 0.0315[0.0232|0.0002 | 0.0004 [ 0.0001 || 0.0310|0.0102|0.0100
YZF 0.0076(0.0218|0.0002 | 0.0004 [ 0.0001 |{0.0309|0.0102|0.0097

!

H2

this case, CYWZ and ULISE were equally successful at
estimating the states and the unknown inputs. Note also
that ULISE is consistently the best filter (cf. Table 1),
which agrees with the claim in Section 5.4 of being glob-
ally optimal over the class of all linear unbiased state
and input estimates for systems with unknown inputs,
while CYWZ performs just as well, which shows that in
this particular example, the replacement of the gener-
alized least squares estimate of dyj with the ordinary
least squares estimate has little impact on the filter per-
formance. When the direct feedthrough matrix has full
rank, as with H? and H3, GDM and YZF performed
just as well as CYWZ and ULISE, which is consistent
with the claim of global optimality of GDM in [16].



7 Conclusion

This paper presented a unified filter for simultaneously
estimating the states and unknown inputs in an un-
biased minimum-variance sense for linear discrete-time
stochastic systems, without any restriction on the di-
rect feedthrough matrix of the system. We proved that
ULISE is globally optimal over the class of all linear
unbiased state and input estimators for systems with
unknown inputs and provided stability conditions for
the filter, which are shown to be closely related to the
strong detectability of the system. Simulation results
have shown that ULISE was the best estimator in all the
test trials.
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