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Abstract— Recently developed neuromorphic vision sensors
have become promising candidates for agile and autonomous
robotic applications primarily due to, in particular, their high
temporal resolution and low latency. Each pixel of this sensor
independently fires an asynchronous stream of “retinal events"
once a change in the light field is detected. Existing computer
vision algorithms can only process periodic frames and so a new
class of algorithms needs to be developed that can efficiently
process these events for control tasks. In this paper, we
investigate the problem of quadratically stabilizing a continuous-
time linear time invariant (LTI) system using measurements
from a neuromorphic sensor. We present an H∞ controller
that stabilizes a continuous-time LTI system and provide the
set of stabilizing neuromorphic sensor based cameras for the
given system. The effectiveness of our approach is illustrated
on an unstable system.

I. INTRODUCTION

The output of a neuromorphic vision sensor is a sequence
of events rather than periodic frames produced by a regular
camera (e.g., CCD-, CMOS-based). We term these events as
“retinal events" since they are generated once the observed
light field changes by more than a user-chosen threshold [1].

The Dynamic Vision Sensor (DVS) is the first commer-
cially available neuromorphic vision sensor [2] whose pixels
independently and asynchronously fire retinal events once
a change in the light field is detected. One big advantage
of the DVS is that these retinal events are information
bearing and so one avoids processing redundant data as with
camera frames. In addition, the DVS has alluring properties,
for example, micro-second temporal resolution, low-latency
(order of micro-seconds) resulting in increased reactivity,
high dynamic range (> 120dB) and low power requirement,
collectively making it a viable sensor for enabling the quick
computation of control commands to facilitate aggressive
maneuvers of agile robots.

Literature Review. At the current state of the art, almost
all vision based control of mobile robots rely on algorithms
that are developed to process the frames from ‘regular’
cameras. These algorithms are unfortunately not suited to
process the output of the low-latency neuromorphic vision
sensors, which fire a sequence of asynchronous time-stamped
events that describe a change in the perceived brightness
at each pixel. In view of the DVS’ interesting properties,
this sensor seems to be an ideal choice for tasks that are
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limited by the sensing speed and/or the sensing power; for
example, tasks ranging from stabilizing the upright position
of robotic insects [3] to enabling high speed collision-
free flights of autonomous micro-aerial vehicles in complex
environments [4] (not achieved yet). Other existing works
use neuromorphic vision sensors for balancing an inverted
pencil [5] and for controlling an autonomous goalie [6]. The
works in [7], [8] consider noisy events by modeling their
generation through suitable noise processes. For example, [8]
models ambiguities in the generation of the retinal events
through a diffusion process deriving its inspiration from
works that model the event activity in biological neurons.
Furthermore, a proportional-derivative control scheme based
on the DVS’ ambiguous measurements was presented in
[7] for the task of heading regulation. However, all the
proposed methods are problem-specific and they involve
first computing explicit representations for the states and
then using these estimates for closed-loop control. Hence,
it remains an open problem to consider if less restrictive
conditions on a given system can be achieved by going
directly from the events to control commands rather than
performing control via state-estimation.

Additionally, one cannot readily apply existing control
techniques developed in the event-based control literature [9],
in which one typically has the flexibility to design a sensor
(thus, events) to guarantee some performance requirement
for the overall system (e.g., minimize the attention needed
by the plant). However, in our case, we are given a sensor and
are restrained by its inherent properties (i.e., with no means
of controlling the retinal events except threshold design) to
facilitate our control task.

Contributions. To the best of the authors’ knowledge, this
work is the first to address the stability of a continuous
time linear time invariant (LTI), single input single output
(SISO) system using asynchronous neuromorphic measure-
ments from a DVS. Our approach goes directly from the
events to control commands instead of first explicitly esti-
mating the system states for feedback control. The intuition
behind our approach is based on characterizing the lowest
upper bound on the relative error between the continuous-
time output that we do not have access to and the estimate
of this output computed from the retinal events fired by the
DVS. Then, by considering an auxiliary uncertain system, we
show that an H∞ controller stabilizes the auxiliary system
and in turn stabilizes our hybrid system; furthermore, we
derive the maximum event threshold that is required for
a DVS to stabilize the given LTI system. Our solution is



facilitated with some ideas and tools drawn from works done
within the context of control with limited information, in
particular, the quantized control literature, e.g., [10]–[12].

Outline. This paper is organized as follows. In Section II,
we clearly formulate the problem by first characterizing the
DVS model and represent the combined LTI system and DVS
model as a hybrid system. Then, in Section III, we design
a stabilizing controller for this hybrid system. In turn, we
present a criterion that provides us with the least restrictive
(largest) event threshold that is required of a DVS to stabilize
the given LTI system. In Section IV, we verify our results
via a numerical experiment. Finally, in Section V, we present
conclusions and outline possible extensions to this work.

II. PROBLEM FORMULATION

LTI System. Consider the unstable, single input, stabiliz-
able and detectable continuous-time LTI system (see Ap-
pendix I for a physical example) given by,

ẋ = Ax+Bu,
y = c′x,

(1)

where x ∈ Rn is the system state, u ∈ R and y ∈ R are the
scalar input and output, respectively, of the system, and A ∈
Rn×n, {B, c} ∈ Rn×1. The initial state x(0) is unknown.
Note that we have no direct access to the output y, except
through the “retinal event" measurements that we obtain from
a neuromorphic camera, which we characterize next.

DVS Model. Our sensor of choice is the Dynamic Vision
Sensor (DVS), which is the first commercially available neu-
romorphic sensor [2]. The DVS comprises of a photodiode
that converts luminosity to a photocurrent, denoted by y as
in (1), that is then amplified in a logarithmic fashion to
detect brightness changes in real time. “Retinal events” are
triggered when the brightness change exceeds a user-chosen
threshold [1]; thus, we model the trigger condition based on
which “retinal events" are generated by each pixel as

|τ | ≥ h, (2)

where

τ , logb |y| − logb |q| = logb |c′x| − logb |q|, (3)

b is an arbitrary base, q ∈ R is the trigger reference (an
internal state) and h > 0 is a user-defined event threshold. In
the parlance of a hybrid system model, the trigger condition
(2) is a guard set, which we denote as D, i.e., a “retinal
event" occurs when the combined system (LTI system and
DVS model) state x := [x>, q]> ∈ D.

The k-th “retinal event" is then given by the triple:
〈tk, 〈xp(tk), yp(tk)〉, p(tk)〉, where tk denotes the timestamp
at which the “retinal event" was fired and 〈xp(tk), yp(tk)〉
represents the pixel coordinates where a “retinal event" was
fired. However, in this paper, we will only discuss the single
pixel case, hence we have a scalar output y in (1).

As aforementioned, we have no access to this output y,
but instead we have access to polarity measurements, p ∈

{−1, 0,+1} given by the events:

p =

{
sgn(τ), if x ∈ D,
0, otherwise.

(4)

Thus, the (unobserved) evolution of the trigger reference
is given by

q+ = qρ−p, (5)

where for convenience, we define

ρ , b−h ∈ (0, 1), (6)

as the spacing of the logarithmic partitions induced onto the
output space by the logarithmic trigger condition in (2). This
choice of ρ in (6) captures the range of positive values for
the event threshold h of the DVS. Then, the trigger condition
(2) can be equivalently re-written as

D , {x :

∣∣∣∣c′xq
∣∣∣∣ ≥ 1

ρ
or
∣∣∣∣c′xq

∣∣∣∣ ≤ ρ}, (7)

which explicitly defines our guard set D in terms of ρ.
Further, we make the following assumptions regarding the

trigger reference q:
(A1) The initial trigger reference q(0) is known and lies

in the interval ρ ≤
∣∣∣ c′x(0)q(0)

∣∣∣ ≤ 1
ρ with y(0) =

c′x(0) ∈ Dc, the complementary of the guard set
D.

(A2) The sign of q is known at all times.
The former assumption may be restrictive, but one can
typically calibrate the DVS, e.g., by initializing the DVS in
an environment of known luminosity. The consideration of
the case when the initial trigger reference q(0) is known
within a certain bound is a topic of future investigation.
Intuitively, this assumption along with the continuity of
the output trajectory imply that the event trigger for the
DVS always takes place when equality holds for the trigger
condition (2). This in turn makes it possible to keep track
of the internal trigger reference at all times. The latter
assumption is only necessary when considering the general
LTI system. In practice, the luminosity is always positive.

Combined System. Next, combining the LTI system in (1)
and the DVS model in (5) yields the following hybrid system:

ẋ =

[
ẋ
q̇

]
=

[
Ax+Bu

0

]
, x ∈ Rn+1 \ D,

ẋ+ =

[
x+

q+

]
=

[
x

qρ−p

]
, x ∈ D,

(8)

where the polarity measurement p is given in (4) and the
guard set D in (7). The hybrid automaton that results is
illustrated in Figure 1.

Now, the stabilizing control problem with the DVS reads:

Problem 1. The objective of this paper is two-fold:
1) Design an appropriate feedback controller u that in-

corporates polarity measurement p given by a DVS to
quadratically stabilize the hybrid system given in (8).

2) For the stabilizing controller designed for Problem 1-
1, find the least restrictive (largest) upper-bound on



Fig. 1: Open loop hybrid automaton of combined LTI system
and DVS model in (8), where D is given in (7).

(a) Feedback controller in closed loop.

(b) Cascade decomposition of the feedback controller.

(c) Decomposition of w(.) function.

Fig. 2: Controller design approach: From asynchronous
events to continuous-time (CT) control commands.

the event threshold h∗, such that for any DVS with
event threshold h < h∗, this controller quadratically
stabilize the hybrid system in (8).

III. CONTROLLER DESIGN

In this work, we propose a controller that uses polarity
measurements from the DVS in (4) to stabilize an LTI system
(1). As shown in Figure 2(a), the LTI system outputs a
continuous time signal y, which is broken down by the DVS
to produce retinal events (i.e., based on the trigger condition
in (2)). Our goal is to design a feedback controller that
operates on the incoming events to generate a continuous
time control signal u that would quadratically stabilize the
pair (A,B).

The intuition behind our controller design is based on
isolating the uncertainty in the polarity measurements of the
DVS. Inspired by output feedback control, we construct an
estimator w(.) of the output signal y in Section III-A and
use the resulting estimate z as an input to our controller K,
which we will design in Section III-C. This cascade set-up
of the feedback controller, which consists of the estimator
w(.) and the controller K is shown in Figure 2(b).

Fig. 3: Output of ZOH function (estimator of q̂): red/solid
dots indicate positive transitions while blue/hollow dots
indicate negative transitions.

A. Design of estimator for y

Since there is no additional sensor to appropriately quan-
tify the lack of information between the retinal events, a
relatively simple design of w(.) may be one that performs a
Zero-Order-Hold (ZOH) on the retinal events arriving from
the DVS that is then amplified by a non-zero scalar λ as
shown in Figure 2(c). Thus, we will construct the signal z
as an estimate of y with the following:

z = λq̂, 0 6= λ ∈ R, (9)

where λ will be provided and justified in Section III-B, and
q̂ is an estimate of q. Since q(0) is known according to (A1),
we choose the estimate of the trigger reference q in view of
the trigger condition in (2) to follow the same evolution of
(5) as follows:

q̂+ = q̂ρ−p, (10)

with q̂(0) = q(0). Thus, q̂ = q for all t.
Figure 3 illustrates an example scenario for the evolution

of (10), where the brightness increased (i.e., given by the
red/solid dots) at the event-time t1 from a known initial
ρ ≤ y0 ≤ 1

ρ and the brightness decreased (i.e., given by
the blue/hollow dots) at event-times t2, t3, t4.

B. Error quantification

Now, we would like to quantify the closeness of the
designed continuous-time signal z to the unknown output y
of the plant. More precisely, we would like to ascertain this
closeness in the sense that the maximum absolute relative
error

∣∣∣ z−yy ∣∣∣ is minimized. The closeness between z and y

can be visualized using Figure 4; thus, we have the following
lemma.

Lemma 1. q̂ estimates y with bounded (asymmetric) uncer-
tainty:

ρy ≤ q̂ = q ≤ y

ρ
. (11)

Proof. By the construction of our estimate q̂ in (10), q̂(0) =
q(0) holds. Moreover, by Assumptions (A1) and (A2), and
without loss of generality, q and y are assumed to be positive,
we have that ρy ≤ q̂ = q ≤ y

ρ holds initially.
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Fig. 4: Analysis of the signal z (λ = 1): Red/solid lines
are due to positive transitions (p = +1) while blue/solid-star
lines are due to negative transitions (p = −1).

At an arbitrary time t, assume that (11) holds. Then, until
an event occurs, it still holds, as by definition of the trigger
condition, we must have ρy < q = q̂ < y

ρ . When an event
occurs, before the transition, we have y = ρ−pq by definition
of the trigger condition. After reset, we have y+ = y and
q+ = ρ−pq. It follows that q̂+ = q+ = y+, so that ρy ≤
q̂ = q ≤ y

ρ holds after the transition.
By induction, ρy ≤ q̂ = q ≤ y

ρ holds at all times. �

Note that Figure 4 has been generated with unit amplifica-
tion, λ = 1, i.e., z = q̂. We observe that the estimate q̂ causes
an unequal spacing between positive (p = +1) and negative
(p = −1) transitions (note the unequal length of the blue and
red segments). Furthermore, the logarithmic property of the
trigger condition in (2) enables us to conservatively bound
the error between the signals z and y via a sector whose
borders are represented by the lines z = y

ρ and z = yρ.
The ability to bound this error will facilitate the ensuing
analysis in designing K in Section III-C. Furthermore, it is
noteworthy that the uncertainty in our problem is similar but
not equivalent to the uncertainties encountered in logarith-
mically quantized systems because of the ‘overlap between
partitions’ that results from the possibility for positive and
negative transitions.

The following provides us a symmetric bound on the ab-
solute relative error between z and y signals; this symmetric
bound is a desired trait as will be shown in Theorem 2.

Lemma 2. The upper-bound δHM on the absolute relative
error between the z and y signals is given by,∣∣∣∣z − yy

∣∣∣∣ ≤ δHM ,
with

z = λHM q̂,

where δHM , 1−ρ2
1+ρ2 and λHM , 2ρ

1+ρ2 .

Proof. By Lemma 1,

ρy ≤ q̂ ≤ y

ρ
,

Fig. 5: H∞ control problem with generalized plant P and
controller K given in (14) and (15), respectively.

2ρ2

1 + ρ2
y ≤ z = λHM q̂ =

2ρ

1 + ρ2
q̂ ≤ 2ρ

ρ(1 + ρ2)
y,

(1− 1− ρ2

1 + ρ2
)y ≤ z ≤ (1 +

1− ρ2

1 + ρ2
)y,

(1− δHM )y ≤ z ≤ (1 + δHM )y,

which is a symmetric inequality and in turn gives an upper-
bound on the relative error between z and y. �

Additionally, it may be interesting to note that the ampli-
fication factor λHM is the harmonic mean (HM ) of ρ and
1
ρ (i.e., the bounds of the trigger condition).

C. Design of K

Let us now note that the direct synthesis of a stabilizing
controller for the hybrid system (8) may be difficult. Hence,
to solve Problem 1-1, we resort to finding sufficient con-
ditions for stabilizing the hybrid system by considering the
stability of an auxiliary uncertain system, as stated in the
following proposition.

Proposition 1. The hybrid system (8) (with (A,B, c′) stabi-
lizable, detectable and ρ ∈ (0, 1)) is quadratically stable via
a controller K if the following auxiliary uncertain system

ẋ = Ax+Bu,
z = (1 + ∆)c′x, |∆| ≤ δHM

(12)

is quadratically stabilizable via the controller K with δHM
given in Lemma 2.

Proof. Lemma 2 shows that the hybrid system (8) is an
instance of the auxiliary uncertain system (12). Thus, the
proposition holds directly. �

We are now ready to state the solution to Problem 1-1 in
the following theorem.

Theorem 1. The hybrid system (8) (with (A,B, c′) stabiliz-
able, detectable and ρ ∈ (0, 1)) is quadratically stable via
an H∞ controller, provided that the event threshold h in (2)
for the DVS is upper-bounded, i.e.,

h < h? = logb

√
γ+1
γ−1 , (13)

where γ > 1 is the H∞ norm of the closed-loop uncertain
system (12) with δHM = 1−ρ2

1+ρ2 .

Proof. We will show that the auxiliary uncertain system (12)
can be quadratically stabilized with an H∞ controller in
conjunction with small gain theorem.



Let us cast this problem as a standard H∞ control problem
shown in Figure 5 with the generalized plant P given by

P =

 A 0n×n B
In×n 0n×n 0n×1
c′ c′ 01×1

 (14)

and the H∞ controller K given by

K =

[
Ac Bc
Cc Dc

]
(15)

with input z from Lemma 2 that can be synthesized under
some mild assumptions given in [13]. Furthermore, we will
obtain the gain γ of the resulting closed-loop system (P,K)
in Figure 5. This gain γ can be found via a γ-iteration
algorithm [13] as ||Txw(s)||H∞ < γ where Txw(s) is transfer
function from w to x.

Then, applying the small gain theorem, with |∆| ≤ δHM ,
we find an upper bound on δHM that can be tolerated, i.e.,

δHM < δ∗HM ,
1

γ
,

such that the closed loop system (P,K,∆) is quadratically
stable or equivalently robustly asymptotically stable [14].
Now, in view of δHM = 1−ρ2

1+ρ2 from Lemma 2, we obtain

ρ∗ =
√

γ−1
γ+1 . Additionally, from our definition of ρ in (6),

we obtain an upper bound on the tolerable event threshold

h < h? , logb

√
γ + 1

γ − 1
.

Finally, by Proposition 1, the H∞ controller also quadrat-
ically stabilizes the hybrid system (8). �

In Lemma 2, we reasoned that the minimization of the
relative error between z and y would result in the largest
h∗, by having symmetric error bounds on z via a choice of
λHM = 2ρ

1+ρ2 . However, this reasoning needs verification.
For the H∞ controller that we found in Theorem 1, we verify
in the following theorem that the threshold h∗ in Theorem
1 indeed solves Problem 1-2.

Theorem 2. The choice of λHM = 2ρ
1+ρ2 in Lemma 2

yields the least restrictive (largest) upper bound on the event
threshold h∗ in Theorem 1.

Proof. The problem of finding the least restrictive upper
bound on the event-threshold, h∗, in (13) for the DVS is
equivalent to finding the minimum ρ∗, and can be cast as
the following optimization problem:

minimize
ρ,λ

ρ,

subject to 0 < ρ < 1,

δ = max{1− λρ, λ
ρ
− 1},

0 < δ ≤ δ̄,

with a δ̄ that satisfies the small gain theorem, i.e., δ̄γ <
1, as in Theorem 1. To solve this optimization problem

Fig. 6: Illustration of the optimization problem for finding
(ρ∗, λ∗) via two sub-problems (with δ̄ = 0.35).

Fig. 7: Closed loop hybrid automaton of combined LTI
system, DVS model and H∞ controller, where τ and D
are given in (3) and (7), respectively, and with h < h∗ in
Theorem 1.

analytically, we note that ρ∗ is given by min{ρ1, ρ2} in view
of the following two sub-problems (cf. Figure 6):

minimize
ρ1,λ1

ρ1,

subject to 0 < ρ1 < 1,

2ρ1
1 + ρ21

≤ λ1,

ρ1<λ1≤ρ1(δ̄+1),

minimize
ρ2,λ2

ρ2,

subject to 0 < ρ2 < 1,

2ρ2
1 + ρ22

≥ λ2,

1− δ̄
ρ2

<λ2≤
1

ρ2
.

It can be verified that the solutions to both sub-problems
coincide in a unique λ∗ = λHM (ρ∗), as illustrated in Figure
6. Thus, this concludes the proof since ρ∗ results in the least
restrictive upper bound h∗ in view of (6). �

To sum up, our resulting closed loop hybrid automaton is
illustrated in Figure 7.

D. Practical Stability

A potential problem that can arise in the practical imple-
mentation of our approach is the possibility of having an



Fig. 8: Numerical Example: Stabilization of unstable system. The top plot shows the estimate of the trigger reference and
the control command, while the bottom plot shows the evolution of closed loop system dynamics.

infinite number of events when the output is near the origin.
This can occur due to the logarithmic trigger condition
in (2), which induces logarithmic spacings separated by ρ
in the output space that carry over to the state-space due
to the linearity of the output y. In particular, when the
output y crosses 0, an infinite number of events would be
fired by the DVS over a finite time interval (similar to a
Zeno phenomenon observed in hybrid systems, e.g., in [15]),
making it impractical for any controller to keep up with in
real time.

To overcome this potential problem, we propose the in-
clusion of an auxiliary band near the origin as in [16]. Thus,
instead of requiring quadratic stability, we require that the
states instead converge to a neighborhood of the origin (i.e.,
practical stability) as defined in [10]. We remark that this
problem would not happen for vision sensors as luminosity
is nonnegative.

IV. NUMERICAL EXPERIMENT

In this section, we demonstrate our proposed approach in
Section III-C with the following unstable, but stabilizable
and detectable, LTI system:

A =

[
2 10
0 5

]
, B =

[
1
1

]
, c =

1√
5

[
2
1

]
.

From the design of an H∞ controller for the auxiliary
uncertain system in (12) using the hinfric command in
MATLAB, we obtain γ = 1.3867 and h∗ = 0.9100. The
simulation results are presented in Figure 8. The bottom plot
shows that the controller indeed stabilizes the plant and there
are many events produced when the output of the system
crosses the origin for the reasons discussed in Section III-D.
We have included an auxiliary band with width 10−4 near

the origin. When no more events are produced for some time
(i.e., the states oscillate strictly within the band), then, we
have practical stability, which occurs at around 1.62 seconds.

V. CONCLUSIONS AND FUTURE WORK

The Dynamic Vision Sensor (DVS) is a neuromorphic
sensor, which is a recent addition to the classes of vision
sensors. The nice properties of the DVS promise to facilitate
agile robotic maneuvers. However, existing vision algorithms
cannot be directly adapted to process these events; thus, new
algorithms need to be developed.

In this work, we proposed an H∞ controller that quadrat-
ically stabilizes LTI systems using DVS measurements. In
particular, we provide the least restrictive upper bound on the
event threshold, h∗, for the DVS such that the pair (A,B)
is quadratically stabilized. This work can be viewed as an
initial attempt to locally stabilize a nonlinear system about
some operating point using DVS measurements.

There are many interesting directions of future research.
An important one is to develop a control scheme that can sta-
bilize a given LTI system in the presence of non-deterministic
trigger reference. Additionally, a linear varying luminance
profile may not be regularly encountered in practice and so
a control scheme needs to be developed that can handle an
accurate description of the environment’s luminance, e.g.,
through an integrative sensor model. Finally, it would be
crucial to generalize the results for multiple input multiple
output (MIMO) systems to tackle real world applications.
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APPENDIX I
PHYSICAL EXAMPLE

Figure 9 presents a physical example that may be encoun-
tered in practice. In this example, the DVS is mounted on a
platform with linear (x1, x2) dynamics and looks at a linearly
varying brightness profile whose gradient is given by the
linearized sensor function, c. The H∞ controller developed
in Section III-C for each pixel of the DVS produces suitable
control commands u to the platform for moving the DVS to
the point with lowest luminosity.

Fig. 9: Physical example: DVS (green cylinder) mounted
on a platform with linear (x1, x2) dynamics and facing a
linearly varying brightness profile. The DVS provides control
commands u to the platform to move the camera towards the
red dot (with lowest luminosity).
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