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Abstract— In this paper, we develop an adaptive control
approach for hidden mode tracking of uncertain hybrid systems
in Brunovsky form that are subject to actuator input amplitude
and rate constraints, as well as bounded disturbances. Our
approach adapts to the parameters of the hidden mode, and
relies on a systematic modification of the reference model to
deal with input constraints and disturbances in a stable manner.
Global tracking capability is shown for input-to-state stable
systems, while for input-to-state unstable systems, the local
regions of attraction are characterized. The effectiveness of our
input-constrained hidden mode tracking approach is illustrated
with a robot walking example.

I. INTRODUCTION

Control systems are typically plagued by uncertainties in
the form of disturbance signals and dynamic perturbations.
Moreover, control inputs to these systems are constrained
in most practical applications due to physical limitations
of actuators. It may also be desirable to intentionally im-
pose artificial limits, e.g., to avoid input chattering that
can excite unmodeled dynamics, which in turn, may cause
plant damage. On the other hand, for hybrid systems (i.e.,
systems for which the continuous dynamics is described
by a finite collection of functions, each corresponding to a
mode), the mode may be unknown or hidden because it is
impractical or too costly to measure without interfering with
the controlled process or adding unnecessary weight, or when
such mode sensors fail. Thus, the tracking control problem
of hidden mode hybrid systems (cf. [1], [2] for a detailed
model description) with input amplitude and rate constraints
can benefit many applications, such as navigation in hetero-
geneous environments, robotics, manufacturing, electronics,
chemical or biological processes, etc.

Literature Review. Control design in the presence of input
saturation has been widely studied, especially for known
systems with input amplitude limits (see, e.g., [3]–[5] and
references therein). The idea of tracking an adaptive refer-
ence model, i.e., with modifications to the reference model
dynamics to deal with control deficiencies due to control am-
plitude and rate saturation as well as bounded disturbances,
has been explored and formally characterized by various
authors (e.g., [6]–[13]) for linear time-invariant systems
and nonlinear systems in Brunovsky form. This includes
a positive (ρ, µ)-modification that is recently proposed in
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[13] for preventing control amplitude and rate saturation.
However, these approaches do not apply to hybrid systems
that have switching dynamics and may exhibit state jumps.

On the other hand, tracking controllers for hybrid systems
typically assume full knowledge and control of the systems’
continuous and discrete dynamics [14]–[16]. Since these
assumptions are difficult to guarantee due to ever present dis-
turbances and imperfect knowledge of the system parameters
and its discrete mode, a hidden mode tracking control design
was developed in [2] to adaptively track a well-posed (e.g.,
with a sufficiently long dwell-time between mode switches)
time-varying reference trajectory. The design, however, as-
sumes that there are no constraints on its control inputs.

Contributions. This paper develops an adaptive hidden
mode tracking control approach for uncertain hybrid systems
in Brunovsky form using standard tools of Lyapunov-based
control synthesis for hybrid systems when the input ampli-
tude and rate are limited. To deal with and prevent input
saturation, the reference model is adaptively modified such
that in the case when the desired open-loop reference is not
feasible due to these saturation limits, the modified reference
becomes feasible and remains stable. Moreover, the effects of
bounded time-varying disturbances and jump dynamics can
be tolerated by further modifying the reference model. Our
approach deals with stability issues that arise from combining
the hidden mode tracking approach with no input constraints
in [2] with the concepts of input-constrained tracking for
non-hybrid systems in [13] to adaptively track the modified
reference trajectory. We provide global and local stability
guarantees for open-loop input-to-state stable and unstable
systems, respectively, where in the latter case, we provide
an estimate of their domains of attraction.

II. PROBLEM FORMULATION

We consider a class of uncertain hybrid systems H in
Brunovsky form1 that is assumed to be perturbed by bounded
and possibly state-dependent time-varying disturbances, i.e.,
|d(xp(t), t)| ≤ dmax, with known dmax:

(x(n)
p , q̇)(t) = (WT

q Φ(xp(t)) + bqu(t) + d(xp(t), t), 0),

= (fq(xp(t), u(t)), 0), xp(t) ∈ Cq, (1)

(xp, q)(t
+) = (gq(xp(t)), δq(xp(t))), xp(t) ∈ Dq,

where the plant state vector is denoted as xp(t) :=

[xp(t), ẋp(t), . . . , x
(n−1)
p (t)]T ∈ Rn. For each discrete

1The same approaches developed in this paper can be easily adapted to
extend the results to the class of hidden mode hybrid systems with a family
of linear time-invariant continuous dynamics (cf. [13]).



state/mode q ∈ Q := {1, . . . , |Q|}, fq(xp(t), u(t)) is the
continuous dynamics, Cq the (closed) flow set, Dq the
(closed) jump set, gq(xp(t)) the (bounded) discrete tran-
sition/reset map and δq : Dq → Q the mode transition
map. We assume that the reset map gq(xp(t)) is Lipschitz
continuous for all q ∈ Q
‖gq(xp,1(t))− gq(xp,2(t))‖ ≤ K‖xp,1(t)− xp,2(t)‖ (2)

for some Lipschitz constant K > 0. It also follows from
(1) that on every open interval on Cq \ Dq , the mode q
remains constant, while the continuous states flow according
to x(n)

p (t) = WT
q Φ(xp(t)) + bqu(t) + d(xp(t), t).

The mode is unknown or hidden and mode transitions are
autonomous, i.e., there is no direct control over the switching
mechanism that triggers the discrete events. We also assume
that Φ(xp(t)) is a known bounded vector that is independent
of the mode q, whereas Wq and bq are unknown constant
vectors and scalars with known bounds given by Wmax ≥
Wq,max ≥ Wq ≥ Wq,min ≥ Wmin > 0 (element-wise)
and bmax ≥ bq,max ≥ bq ≥ bq,min ≥ bmin > 0.

The control input u(t) ∈ R is amplitude and rate limited
with uc(t) representing the commanded control input before
saturation, while umax and u̇max are the actuator amplitude
and rate saturation levels. System states xp(t) are assumed
to be accessible but their derivatives ẋp(t) (and specifically
the last component) are not2.

Using the hybrid formalism proposed in [17], solutions
φ to the hybrid system H are defined by hybrid arcs on
hybrid time domains, which are functions defined on subsets
of R≥0 × N given by the union of intervals of the form
[tj , tj+1]×{j}, tj+1 ≥ tj . Since the mode q remains constant
for each j, one can associate each solution of the hybrid
system H with a switching sequence, indexed by an initial
state φ(0, 0) ∈ Rn:

Sφ(0,0) = (t0, q0), (t1, q1), . . . , (tj , qj), . . . , (tN , qN ), . . .

in which the sequence may or may not be infinite. We
may take tN+1 = ∞ in the finite case, with all further
definitions and results holding. The corresponding increas-
ing sequence of switching times is denoted as TS =
t0, t1, . . . , tj , . . . , tN , . . . and the switching modes is denoted
as QS = q0, q1, . . . , qj , . . . , qN , . . ..

Moreover, if we restrict the solutions to the hybrid system
H to a class of solutions known as dwell-time solutions [17],
[18] such that the hybrid time domains3 are given by the
union of intervals of the form [tj , tj+1]×{j}, tj+1 ≥ tj+τD
with dwell-time τD > 0, we denote the resulting switching
sequence, strictly increasing sequence of switching times and
switching modes as Sφ(0,0)

τD , TSτD and QSτD , respectively.

A. Positive (ρ, µ)-modification
Similar to [8], [9], [13], we consider a control de-

sign modification that protects the adaptive input signal

2An extension to the case with accessible ẋp(t) is straightforward and a
similar idea can be found in [13].

3Note that for the sake of conciseness, we may abuse the notation in parts
of paper and only specify the continuous time domain, unless the discrete
time domain is explicitly needed for clarity.

from amplitude and rate saturation. This is achieved by
defining u

δµ
max := umax − δµ, u̇

δρ
max := u̇max − δρ,

∆uc(t) := u
δµ
maxsat

(
uc(t)

u
δµ
max

)
− uc(t) and ∆u̇c,ρ(t) :=

u̇
δρ
maxsat

(
u̇c,ρ(t)

u̇
δρ
max

)
− u̇c,ρ(t), where δµ and δρ are chosen

constants that satisfy 0 < δµ < umax and 0 < δρ < u̇max.
The saturation function is given by

σsat

(
s(t)

σ

)
=

{
s(t), |s(t)| ≤ σ,
σsgn(s(t)), |s(t)| > σ.

Using these definitions, we consider a positive (ρ, µ)-
modification of the input amplitude and rate using implicit
equations given by:

uc(t) := ud(t) + µ∆uc(t), (3)
u̇c,ρ(t) := u̇d,µ(t) + ρ∆u̇c,ρ(t), (4)

where ud(t) is the desired input before µ-modification,
u̇d,µ(t) is the desired input rate after µ-modification but
before ρ-modification4, while uc(t) and u̇c,ρ are the input
amplitude and rate after (ρ, µ)-modification, which will be
designed in Section III. Further restrictions on the choice of
µ > 0 and ρ > 0 will be derived in Theorem 2 for input-
to-state unstable systems. The following lemma gives the
explicit solutions of uc(t) and u̇c,ρ(t).

Lemma 1. For µ > 0 and ρ > 0, the explicit solutions to
(3) and (4) ∀t > 0 are given by:

uc(t) =
1

1 + µ

(
ud(t) + µuδµmaxsat

(
ud(t)

u
δµ
max

))
, (5)

u̇c,ρ(t) =
1

1 + ρ

(
u̇d,µ(t) + ρu̇δρmaxsat

(
u̇d,µ(t)

u̇
δρ
max

))
. (6)

Proof. The proof for uc(t) is given in [8], [9], and the same
proof applies for u̇c,ρ(t) (cf. [13]).

Remark 1. As in [13], the input amplitude and rate con-
straints need not be symmetric. To incorporate asymmetric
limits on the control inputs, we can derive the (ρ, µ)-modified
command inputs by replacing σsat

(
s(t)
σ

)
with

asat(s(t), σ, σ) :=

 s(t), σ ≤ s(t) ≤ σ,
σ, s(t) > σ,
σ, s(t) < σ,

(7)

where σ represents either umin, u̇min, uδµmin := umin + δµ,
or u̇δρmin := u̇min + δρ; while σ represents umax, u̇max,
u
δµ
max := umax − δµ or u̇δρmax := u̇max − δρ.

B. Reference modification: Impulsive closed-loop higher-
order adaptive reference model

Inspired by the approach in [6], [10], a previous work
[13] modified the open-loop reference model (ORM) to
include control amplitude and rate deficiencies feedback
and a tracking error feedback, resulting in a closed-loop
higher-order adaptive reference model (CHARM). In this

4This definition of the desired input rate is to be distinguished from u̇d,o,
which is before (ρ, µ)-modification, and u̇d, which is the derivative of ud
after ρ- but before µ-modifications, defined later in Section III.



paper, to cope with impulsive jumps in the system states,
we further modify the reference model (i.e., CHARM) to
also allow impulsive jumps in the reference model. With this
addition, we end up with an impulsive closed-loop higher-
order adaptive reference model (iCHARM) of the form:

ẋm(t) = ẋORMm (t) + a(∆ud(t)) + c(e(t)),
xm(t+) = i1(xp(t

+), xp(t), xm(t)),
ṙ(t) = h(rd(t),∆u̇d(t)),
r(t+) = i2(r(t), xp(t

+), xp(t), xm(t+), xm(t)),

(8)

where xm(t) is the model state and r(t) is the reference
signal. ẋORMm (t) is the open-loop reference model dynamics,
which is modified by an adaptive term a(∆ud(t)), a tracking
error feedback term c(e(t)) and a higher order dynamics of
r(t) given by h(rd(t),∆u̇d(t)), with rd(t) being the desired
reference signal of the ORM, as well as a novel addition,
namely impulsive terms i1(·) and i2(·) to “absorb” the state
jumps that may lead to violation of the input constraints or to
destabilization of the closed-loop system. The tracking error
vector and control deficiencies in (8) are defined as

e(t) := xp(t)− xm(t), (9)

∆ud(t) := umaxsat

(
uc(t)

umax

)
− ud(t), (10)

∆u̇d(t) := u̇maxsat

(
u̇c,ρ(t)

u̇max

)
− u̇d,µ(t), (11)

with uc(t) and u̇c,ρ(t) from Lemma 1.

C. Uniform Ultimate Boundedness and Stability

Definition 1 (Uniform Ultimate Boundedness [19]). The
solutions of (1) are said to be uniformly ultimately bounded
with ultimate bound β if there exist β and ξ, and for every
0 < α < ξ, there exists T = T (α, β) ≥ 0 such that

‖φ(t0, 0)‖ ≤ α⇒ ‖φ(t, j)‖ ≤ β,∀t ≥ t0+T, (t, j) ∈ domφ.

Next, we make use of a weaker version of the stability
analysis tool for hybrid systems called multiple Lyapunov
functions (MLF) theory [20, Thm. 2.3] as follows:

Proposition 1. Let S be the set of all switching sequences
associated with the system (1). If for each S ∈ S, there exist
J ∈ N and some Lyapunov-like functions Vq : Rn → R for
all q ∈ Q that satisfy all of the following conditions:

1) Vq(xp) is positive definite on Cq (i.e., Vq(xp) > 0 for
all xp 6= 0 and Vq(0) = 0),

2) V̇q(xp) ≤ 0 for all xp ∈ Cq , and
3) Vq(tj+1)[j + 1] ≤ Vq(tj)[j] < ∞, ∀j ≥ J where Vq[j]

is defined as the value taken by Vq(xp) during the j-th
switch-on instant,

then the system is uniformly ultimately bounded with ultimate
bound β := ‖maxq∈Q V

−1
q [J ]‖.

Proof. By item 2), the functions Vq(xp) are non-increasing
during flow. Thus, any increase in Vq(xp) is due to state
jumps governed by gq(xp(t)). But, item 3) essentially im-
poses an upper bound on Vq(xp) after some finite time T
despite state jumps. Thus, the proposition follows immedi-
ately from Definition 1.

D. Problem Statement

The problem of an input-constrained tracking control
of uncertain hidden mode hybrid systems is relevant for
situations when a general desired behavior of the system
is given but a specific feasible reference model may be too
difficult to design a priori because of input constraints as well
as uncertain and complex hybrid system dynamics. Thus, the
desired reference model needs to be suitably modified such
that when input constraints are imposed, the system remains
stable and still exhibits the general desired behavior. On the
other hand, when a desired reference model can be tracked
without violating input constraints, this desired reference
model should be ultimately tracked.

The problem we seek to address is as follows:

Problem 1 (Adaptive Tracking). Given an open-loop ref-
erence model (ORM), design an adaptive control signal
uc(t) (or equivalently, ud(t)), as well as the modification
terms of iCHARM, i.e., the signals c(e(t)), a(∆ud(t)),
h(rd(t),∆u̇d(t)), i1(·) and i2(·) in (8), so that the state
xp(t) of an uncertain plant with input amplitude and rate
constraints tracks the adaptively modified reference model
state xm(t) with uniformly ultimately bounded errors, while
all signals of the plant and reference model remain bounded.

III. ADAPTIVE TRACKING CONTROL DESIGN

Our control design addresses Problem 1 and builds on our
previous work in [13] and [2], each of which independently
tackled a different aspect of Problem 1, namely issues
related to input constraints and hidden mode switchings,
respectively. However, in an attempt to marry the ideas,
many complications arise and in essence, this paper addresses
these problems and shows that these ideas can indeed work
together with some additional care.

To this end, we shall prove that the tracking error is
uniformly ultimately bounded (cf. Definition 1) without
violating input constraints, by making use of Proposition 1.
In Section III-A, we will deal with challenges associated
with impulsive jumps in the system states xp(t) and ensure
that Conditions 1) and 2) of the proposition is satisfied. On
the other hand, in Section III-B, we will handle challenges
posed by hidden modes and show how Condition 3) can be
satisfied. Then, in Section III-C, we shall provide global and
local stability guarantees for open-loop input-to-state stable
and unstable systems, respectively, where in the latter case,
we provide an estimate of their domains of attraction.

A. Dealing with Input Constraints

Our previous paper [13], which modifies the desired
reference model to account for input amplitude and rate
constraints, only deals with input constraints for non-hybrid
systems. Hence, we need to make sure that impulsive jumps
in the system states xp(t) according to (1) do not lead to a
violation of input constraints or to instability.

Thus, we propose the following modification to the
CHARM dynamics in [13] to yield an impulsive version



(described in Section II-B) that we call iCHARM:

x(n)
m (t) = k∗Tx xm(t) + bmr(t) + b̂(t)∆ud(t)

+ φsgn(eT (t)Pb)dmax,

xm(t+) = xm(t) + xp(t
+)− xp(t), if xp(t

+) 6= xp(t),

ṙo(t) = ṙd(t) + Λr(r(t)− rd(t)), (12)

ṙ(t) =


ṙo(t) + b̂(t)

bm
∆u̇d, |uc(t)| ≤ uδµmax,

ṙo(t) + (1+µ)b̂(t)
bm

∆u̇d, u
δµ
max < |uc(t)| ≤ umax,

ṙo(t), otherwise,

r(t+) = r(t) +
1

bm
(Ŵ(t)T (Φ(xp(t

+))−Φ(xp(t)))

− k∗Tx (xp(t
+)− xp(t))), if xp(t

+) 6= xp(t),

with b =
[
0 . . . 0 1

]T
, and any φ ≥ 1 and Λr < 0

(see additional constraint on Λr in Theorem 2 for input-
to-state unstable systems). ṙ(t) is right-continuous, e(t) :=
xp(t) − xm(t) is the tracking error vector, xm(t) :=

[xm(t), ẋm(t), . . . , x
(n−1)
m (t)]T is the model state vector and

bm is the model gain parameter, while ∆ud(t) and ∆u̇d(t)
are given by (10) and (11). k∗x is chosen such that A =[

0 I
k∗Tx

]
is Hurwitz (such that the xm dynamics remain

stable), while P = PT is the solution of the algebraic
Lyapunov equation ATP + PA = −Q for arbitrary Q � 0.

A noteworthy addition to the CHARM dynamics in [13] is
the jumps in xm and r in (12), which absorb the state jumps
that would otherwise appear in the control input and violate
input constraints. Note also that the case xp(t

+) 6= xp(t)
above is not required for switched systems (i.e., when there
are no state jumps).

We will now show that the iCHARM dynamics above
is compatible with the Lyapunov-based adaptive control
approach that we will take. To this end, we first define a
control Lyapunov function candidate for each mode q:

Vq(xp(t)) = e(t)TPe(t) + W̃q(t)
TΓ−1

W W̃q(t)

+ γ−1
b b̃q(t)

2 + ũ(t)2, (13)

where b̂(t) and Ŵ(t) are estimates of bq and Wq , whereas
the parameter errors are b̃q(t) = b̂(t) − bq and W̃q(t) =
Ŵ(t) − Wq for each mode q ∈ Q, and the tracking
error vector e is as defined above. Moreover, we de-
fined the “desired” input (as if ẋp(t) were accessible) as
u?d(t) =

(k∗Tx xp(t)+bmr(t)−Ŵ(t)TΦ(xp(t)))

b̂(t)
, and the input error

as ũ(t) := ud(t)− u?d(t).
To satisfy Condition 2) of Proposition 1, we choose the

following control and adaptation laws:
Control Law:

u̇d,o(t) = −kũũ(t)− e(t)TPbb̂(t) +
1

b̂(t)

(
bmṙo(t)

− ˙̂
b(t)u?d(t)− ˙̂

W(t)TΦ(xp(t))

+ (k∗Tx − Ŵ(t)TΦ′(xp(t))) [
0n−1 In−1

]
xp(t)

Ŵ(t)TΦ(xp(t)) + b̂(t)u(t)
−ϕsgn(ũ(t)L(t))dmax

),

u̇d,µ(t) =


u̇d,o(t), |uc(t)| ≤ uδµmax,

1
1+µ u̇d,o(t), u

δµ
max < |uc(t)| ≤ umax,

0, otherwise,
(14)

u̇d(t) = −kũũ(t)− e(t)TPbb̂(t) +
1

b̂(t)

(
bmṙ(t)

− ˙̂
b(t)u?d(t)− ˙̂

W(t)TΦ(xp(t))

+ (k∗Tx −Ŵ(t)TΦ′(xp(t))) (15) [
0n−1 In−1

]
xp(t)

Ŵ(t)TΦ(xp(t)) + b̂(t)u(t)
−ϕsgn(ũ(t)L(t))dmax

),
Adaptation Law:

˙̂
W(t) = ΓWΦ(xp(t))

(
e(t)TPb− L(t)ũ(t)

b̂(t)

)
,

˙̂
bo(t) = γbumaxsat

(
uc(t)

umax

)(
e(t)TPb− L(t)ũ(t)

b̂(t)

)
,

˙̂
b(t) =

{
0, b̂(t) ≤ bmin ∧ ˙̂

bo(t) < 0,
˙̂
bo(t), otherwise,

(16)

for any ϕ ≥ 1, kũ > 0, ΓW = ΓTW � 0 and γb > 0.
L(t) = (k∗Tx − Ŵ(t)TΦ′(xp(t)))

[
0 . . . 0 1

]T
is the

last element of k∗Tx −Ŵ(t)TΦ′(xp(t)) and Φ′(xp(t)) is the
Jacobian matrix of Φ(xp(t)). Note that ud(t) is obtained
from integrating (15) with ud(0) = u?d(0), while uc(t),
u̇c,ρ(t), ∆ud(t) and ∆u̇d(t) are as given in (5), (6), (10)
and (11).

Lemma 2. The control and adaptation laws in (14), (15)
and (16) satisfy Conditions 1) and 2) of Proposition 1 for
the control Lyapunov-like function given in (13).
Proof. With the control and adaptation laws, the tracking
error and input error dynamics are given by

ė(t) = Ae(t)− b(W̃q(t)
TΦ(xp(t)) + b̃q(t)u(t)

− d(xp(t), t) + φsgn(e(t)TPb)dmax (17)

− b̂(t)ũ(t)),

˙̃u(t) =
1

b̂
L(t)(W̃q(t)

TΦ + b̃q(t)u(t)

− ϕsgn(ũ(t)L(t))dmax − d(xp(t), t)) (18)

− kũũ(t)− e(t)TPbb̂(t).

It is then straightforward to show that the Vq(xp(t)) > 0 in
(13) has a negative semidefinite time derivative:

V̇q(xp(t)) ≤ −e(t)TQe(t)− 2kũũ(t)2 ≤ 0, (19)

as required by Conditions 1) and 2) of Proposition 1.

B. Dealing with Hidden Modes
Motivated by a previous work [2], we will assume that

mode switchings are sufficiently infrequent, i.e., there exists
a dwell-time τD between switches, to cope with hidden
modes of the hybrid system. Specifically, we assume the
existence of a dwell-time solution that satisfies Condition
3) of Proposition 1.



Lemma 3 (Dwell-time requirement I). Suppose the switching
sequence Sφ(tJ ,J)

τD starting after some finite time (tJ , J) has
a dwell-time τD given by

τD ≥ τVD ≥ τVD,j
for all j ≥ J with

τVD,j =
λmax(P )

λmin(Q)
ln

∣∣∣∣ Vqj (xp(tj))−∆Vmax

Vqj (xp(tj))−∆Vmax −∆Vj+1

∣∣∣∣ ,
(20)

with the following definitions: ∆Vj+1 :=
[Vqj+1(gqj (xp, u)) − Vqj (xp)](tj+1), and ∆Vmax :=

maxt∈I(j,j+1) W̃qj (t)
TΓ−1

W W̃qj (t) + γ−1
b b̃qj (t)

2 + ũ(t)2

where I(j, j+ 1) is the hybrid time interval between jumps.
Then, Condition 3) of Proposition 1 holds.

Proof. For the sake of brevity, only a proof sketch will be
given. From (19), using an approach similar to [21, pp. 91-
93], we can find after some lengthy simplifications that for
each hybrid time interval between jumps, I(j, j + 1),

V̇q(xp) ≤
λmin(Q)

λmax(P )
(Vq(xp)−∆Vmax). (21)

In order for Condition 3) of Proposition 1 to hold, over the
hybrid time interval between jumps I(j, j+1) before the next
jump, the value of Vq(xp) must decrease from Vq(xp(tj))
by at least the increase ∆Vj+1 that is caused by the jump
gqj (xp, u). Thus, by applying the Comparison Lemma [19]
to (21), it can be verified that the minimum dwell-time for
all j ≥ J is given by (20). The maximum dwell-time across
all j ≥ J is then denoted τVD .

C. Global and Local Stability Guarantees

To find global and local stability guarantees for system
(1), we first note that the tracking errors are uniformly
ultimately bounded in the next lemma that follows directly
from Proposition 1 since Conditions 1), 2) and 3) hold.

Lemma 4 (Boundedness of tracking error). For a given
reference trajectory and impulse dynamics that satisfy
Lemma 3, the control and adaptation laws in (14), (15) and
(16), as well as the iCHARM dynamics in (12) guarantee that
the solution to the tracking error dynamics e(t) is uniformly
ultimately bounded, i.e., ‖e(t)‖ < emax for all t ≥ t0 + T
for some T . Moreover, the input and parameter ‘errors’ are
also ultimately bounded, i.e., |ũ(t)| < ũmax, |b̃q(t)| < b̃max
and ‖W̃q(t)‖ < W̃max for all t ≥ t0 + T for some T .

Nonetheless, it is not sufficient that the tracking errors
e(t) = xp(t)−xm(t) are bounded. In fact, it would defeat the
control purpose unless we additionally show the boundedness
of either the plant or model states, i.e., xp(t) or xm(t), and
thus the boundedness of both. Clearly, for systems (1) with
input-to-state stable continuous dynamics, the plant states
(and hence the model states) can be shown to be globally
bounded since both input u(t) and disturbance d(xp(t), t)
are bounded, and the reset map gq(xp(t)) is bounded by
assumption. Thus, the following theorem follows directly.

Theorem 1 (Global stability for systems with input-to-state
stable continuous dynamics). Suppose the resulting input-to-
state stable plant trajectory (1) with the iCHARM dynamics
in (12) has a dwell-time τD ≥ τVD , where τVD is the dwell-
time given in Lemma 3, then the plant states (and hence the
model states) are globally uniformly ultimately bounded.

For the case when the continuous dynamics of system (1)
is input-to-state unstable, global uniform ultimate bounded-
ness of the plant states is not guaranteed. In this case, we
instead provide in Theorem 2 the characterization of its local
domain of attraction.

For analysis purposes, we assume that in the operat-
ing region of interest, ||xp(t+) − xp(t)|| ≤ Jmax and
||Φ(xp(t

+))−Φ(xp(t))|| ≤ JΦ
max. We also assume that the

control input authority is greater than the disturbance input,
i.e., there exists R > 0 such that xp(t) ∈ BR := {xp(t) :
‖xp(t)‖ ≤ R} and bminumax ≥ maxxp(t)∈BR dq(xp(t), t),
where dq(xp(t), t) := |WT

q Φ(xp(t)) + d(xp(t), t)| ≤
|WT

q Φ(xp(t))|+dmax ≤ dmax for all q. We further assume
that ‖Wq‖ ≤ Wmax, ‖Φ̇(xp(t))‖ ≤ Φ̇max and that the
upper bounds are known. Thus, |WT

q Φ(xp(t))| ≤Wmax
Φ :=

dmax − dmax and ∃ψ such that W̃max +Wmax = ψb̃max.
Before moving forward, we would like to note that an ad-

ditional dwell-time τ rD is required for input-to-state unstable
systems. This is because jumps in r(t) may cause the system
state to exit the domain of attraction. Thus, we require a
‘second’ dwell-time τ rD such that the signal r at the end of
the each interval is small enough, i.e.,

r[j] ≤ rI
max := rI

max,B

− ||k
∗
x||Jmax + (Wmax + W̃max)JΦ

max

bm
,

rI
max,B <

bminλmin(Q)η

2κbmbq
− dmax −

bmin
bm

ũmax, (22)

where r[j] denotes the value of r(t) at the end of the hybrid
time-interval I(j−1, j), η :=

2|bqumax−dmax|
|λmin(Q)−2‖Pb‖‖k∗x‖|

and κ :=√
λmax(P )
λmin(P ) , and the upper bound on rI

max,B is the bound
given in [13, Theorem 5] for nonlinear systems in Brunovsky
form without jumps. Note that the latter term in rI

max is
crucial because it ensures that even with jumps in r, it still
results in r(t+) ≤ rI

max,B . The next lemma provides this
‘second’ dwell-time, and can proven in the same manner as
Lemma 3; thus the proof is omitted for brevity.

Lemma 5 (Dwell-time requirement II). Let the switching
sequence Sφ(tJ ,J)

τD starting after some finite time (tJ , J) have
a dwell-time given by

τD ≥ τ rD ≥ τ rD,j
for all j ≥ J with

τ rD,j =
1

Λr
ln

∣∣∣∣r(t+)−∆rmax
r(t−)−∆rmax

∣∣∣∣ , (23)

with ∆rmax := maxt∈I(j,j+1)(ṙ(t)− ṙo(t)), where I(j, j +
1) is the hybrid time interval between jumps, while t+ and
t− are the times before and after the j-th jump (at the start



of interval I(j, j + 1)). Then, r(t+j+1) ≤ rI
max,B holds for

all j ≥ J .

With the above, we now provide the characterization of the
local domain of attraction for systems (1) with input-to-state
unstable continuous dynamics.

Theorem 2 (Local stability for systems with input-to-state
unstable continuous dynamics). Suppose the resulting input-
to-state unstable plant trajectory (1) with the iCHARM
dynamics in (12) has a dwell-time

τD ≥ max{τVD , τ rD},
where τVD and τ rD are the dwell-times given in Lemmas 3
and 5, and let the minimum and maximum of the desired
reference signal be such that

−rI
max < rmind ≤ rd(t) ≤ rmaxd < rI

max

with rI
max given in (22). For given lower and upper bounds

on ṙd(t) such that

ṙmind ≤ ṙd(t) ≤ ṙmaxd ,

let the design parameter Λr be chosen to satisfy

Λr ≤ −
2DI + ṙmaxd − ṙmind

2rI
max − (rmind − rmaxd )

,

and for arbitrary 0 < δµ < umax and 0 < δρ < u̇max, let
the design parameters µ and ρ be selected such that:

µ >max{‖k
∗
x‖‖Pb‖η + bmr

I
max +Wmax

Φ

bminδµ
+
ũmax+umax

δµ

− 2, 0},

ρ >max{ 1

δρ
(u̇max+CI +

bm
bmin

|Λr|(rI
max + rmaxd ))−2, 0},

where |u̇d,µ(t)| ≤ CI +
bm
bmin

|Λr|(rI
max + rmaxd ), with

CI :=
1

bmin

[
(‖k∗x‖+ (Wmax + W̃max)Φ′max)(ϕdmax

+
√
λmin(P )η‖Pb‖+ (Wmax + W̃max)Φmax

+ (b̃max + bq)umax) + ‖ΓW ‖Φ2
maxemax‖Pb‖

+ emax‖Pb‖(bq + b̃max) + kũũmax
]

+ bmṙ
max
d

+
γbumaxemax‖Pb‖

b2min

[
‖k∗x‖

√
λmin(P )η‖Pb‖

+ bmr
I
max + (Wmax + W̃max)Φmax

]
,

DI :=
(1 + µ)bmax

bm
(u̇max + CI).

If the system initial condition and the initial value of the
candidate Lyapunov function satisfy

• xp(0)TPxp(0) < λmin(P )η2‖Pb‖2,

•
√
V (xp(0)) <

√
1
γb

(
λmin(Q)−2κ

bmbq
bmin

rImax+dmax
η

2
‖Pb‖
bmin

(‖k∗x‖+bqψ)

)
,

for q = q(0) if it is known (otherwise, for all q ∈ Q), then

• the adaptive system in (1), (12), (15) has uniformly
ultimately bounded solutions and |r(t)| ≤ rI

max,B ∀t >
0, with rI

max,B given in (22),

• the tracking error e(t) asymptotically decreases during
each flow interval, i.e., when xp(t) ∈ Cq , and

• |uc(t)| ≤ umax and |u̇c,ρ(t)| ≤ u̇max, i.e., control
amplitude and rate limits are avoided ∀t > 0.

Proof. For conciseness, only a sketch of the proof will be
provided. The main idea for this proof is to ensure that
the assumptions in [13, Theorem 5] for non-hybrid systems
hold in spite of the jumps. The only assumption that may
be violated by the introduction of jump dynamics is that of
rI
max,B . This is avoided with the stricter bound on rI

max in
(22) and the dwell-time of τ rD in Lemma 5, which ensure
that r(t) < rI

max,B ∀t > 0. Thus, the results above follow
immediately from [13, Theorem 5]. A minor straightforward
modification of the proof in [13, Theorem 5] has also been
carried out to make explicit the upper bound on Λr.

Remark 2. The dwell-time requirement (i.e., τD ≥
max{τVD , τ rD}) is a sufficient condition, rather than a pre-
scriptive method to compute the dwell-time. This condition
may be hard to guarantee a priori, especially since we
assumed that mode transitions are autonomous. However, the
dwell-time τD can be indirectly controlled by designing the
open-loop reference model (ORM) to have a longer dwell-
time. Since we have constructed Lyapunov functions that
decrease monotonically with increasing dwell-time τD and
with the assumption that the reset map gq(xp(t)) is Lipschitz
continuous for all q ∈ Q, we can practically increase τD in
simulation (indirectly via the ORM design) until satisfactory
performance is attained.

Remark 3. As in [2], asymptotic tracking can be achieved,
if Condition 3) in Proposition 1 is satisfied with strict
inequality, by [20, Thm. 2.3]. This translates to the dwell-
times in Theorems 1 and 2 being strictly greater than τVD
and max{τVD , τ rD}, respectively. In this paper, we opted for
the weaker result of uniform ultimate boundedness so that
the dwell-time requirement discussed above is more easily
satisfied, and that our approach will be more generally
applicable to a larger set of problems.

IV. ILLUSTRATIVE EXAMPLE

Fig. 1. Frontal plane toddler [22].

The goal is to actuate the dynamic walker, (cf. Figure 1
[22]), such that it toddles in a periodic fashion in the frontal
plane, for which the continuous dynamics (assumed to be
input-to-state stable) is given as:

H(θ)θ̈ + C(θ, θ̇)θ̇ +G(θ) = τ,



where τ is the control input/torque generated at the hip or
from ankle actuation, and is amplitude and rate limited either
by physical constraints or by choice, i.e., |τ | ≤ τmax and
|τ̇ | ≤ τ̇max. When the curved portion of either foot is in
contact with the ground, i.e., |θ| > φ, the dynamics are:

H(θ) = I +ma2 +mR2
f − 2mRfa cos θ,

C(θ, θ̇) = mRfaθ̇ sin θ, G(θ) = mga sin θ,

whereas, when the ground contact is along the inside edge
of the foot, i.e., |θ| ≤ φ,

H(θ) = I +ma2 +mR2
f − 2mRfa cosφ,

C(θ, θ̇) = 0, G(θ) = mg(a sin θ −Rf sinα),

where α = θ − φ if θ > 0, otherwise α = θ + φ. The mass
is given by m, the moment of inertia by I and the lengths
and angles are as depicted in Figure 1.

Furthermore, the swing leg collides with the ground when
θ = 0, and assuming an inelastic collision, the angular rate
after collision, i.e., the jump dynamics, is given by

θ̇+ = θ̇− cos

[
2 arctan

(
Rf sinφ

Rf cosφ− a

)]
.

Thus, putting the continuous dynamics in the Brunovsky
form given in (1), the hybrid adaptive system describing the
frontal plane toddler model, as well as the chosen iCHARM
dynamics can be written as follows:
Continuous dynamics (when θp 6= 0):

θ̈p = W1mRfa sin θpθ̇
2
p +W2mgRf sin θp cosφ

+W3mgRf cos θp sinφ+ bqu+ d,

θ̈m=−10ωθ̇m−25ω2θm+26ω2r+ b̂∆ud+sgn(eTPb)dmax,

ṙo = ṙd + Λr(r − rd),

ṙ =


ṙo(t) + b̂(t)

26ω2 ∆u̇d, |uc(t)| ≤ uδµmax,
ṙo(t) + (1+µ)b̂(t)

26ω2 ∆u̇d, u
δµ
max < |uc(t)| ≤ umax,

ṙo(t), otherwise;

Jump dynamics (when θp = 0):

θ̇+
p = θ̇−p cos

[
2 arctan

(
Rf sinφ

Rf cosφ− a

)]
,

θ̇+
m = θ̇−m + θ̇+

p − θ̇−p ,

r+ = r(t) +
1

26ω2
(10ω(θ̇+

p − θ̇p)
+ Ŵ1(mRfa sin θp(θ̇

+
p )2 −mRfa sin θpθ̇

2
p)),

where u := τ −mga sin θp, and correspondingly, umin :=
τmin − mga sin θp, umax := τmax − mga sin θp, u̇min :=
τ̇min − mgaθ̇p cos θp and u̇max := τ̇max − mgaθ̇p cos θp.
When q = 1 (|θp| > φ), W1 = − 1

a1
, W2 = 0, W3 = 0 and

bq = 1
a1

; when q = 2 (0 < θp ≤ φ), W1 = 0, W2 = 1
a2

,
W3 = − 1

a2
and bq = 1

a2
; and when q = 3 (−φ ≤ θp ≤ 0),

W1 = 0, W2 = 1
a2

, W3 = 1
a2

and bq = 1
a2

, with a1 =

I+ma2 +mR2
f , and a2 = I+ma2 +mR2

f −2mRfa cosφ.

Note that the 2mRfa cos θpθ̈p
a1

term in q = 1 is treated as a

disturbance, |d| ≤ dmax :=
2mRfaθ̈max

a1
, where θ̈max is the

maximum expected |θ̈p| for the entire trajectory. The desired
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Fig. 2. θ, θ̇, inputs, input rates and modes.
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Fig. 3. Time history of errors in θ and θ̇.

reference signal is given by rd = rmaxd sin(ωt) and ω = 2π
T ,

where T is the desired period. Figure 2 shows the simulation
of this adaptive system with: a = 0.1 m, Rf = 0.5 m, m =
3 kg, I = 0.1 kgm2, φ = 0.2 rad, g = 9.81 ms−2, |τ | ≤
4 Nm, |τ̇ | ≤ 375Nms−1, δµ = 0.25τmax, δρ = 0.2τ̇max,
T = 16 s, rmaxd = 0.5, 1

a2
≤ b̂(t) ≤ 1

a2
, Λr = −10, Q =

diag(240, 20), γb = 50, ΓW = diag(100, 100, 100), θ̈max =
ω2rmaxd = 0.0771 rads−2, θp(0) = −0.1, θ̇p(0) = 0.1,
θm(0) = −0.5, θ̇m(0) = 0.1, r(0) = rd(0) = 0, b̂(0) = 1

a2
,

Ŵ1(0) = 0, Ŵ2(0) = 1
a2

, Ŵ3(0) = 1
a2

and ud(0) = u?d(0).
We see from Figure 2 that the system states track the

desired trajectories satisfactorily even when subjected to the
input amplitude and rate constraints. Besides, when µ and
ρ are chosen to be sufficiently large, the commanded input
amplitude and rate are observed to be within their bounds.
This larger choice of parameters only results in a marginally
different state trajectory and also slightly higher tracking
errors (differences are almost imperceptible in Figure 3). In
both cases, the tracking errors remain bounded, as desired.

V. CONCLUSION

This paper proposed an adaptive control approach to track
a modified reference model (iCHARM) in an uniformly
ultimately bounded manner when an uncertain hidden mode
hybrid system in Brunovsky form is subject to input ampli-
tude and rate constraints as well as bounded disturbances.
For input-to-state stable systems with constrained input am-
plitude and rate, we showed that tracking can be achieved

in a stable manner globally even in the presence of bounded
disturbances, whereas for input-to-state unstable systems, we
characterized their local regions of attraction. Moreover, we
provided an approach to prevent input amplitude and rate
saturation via (ρ, µ)-modification. By means of a numerical
example, we illustrated the effectiveness of our approach for
input-constrained hidden mode tracking.
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