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Abstract— Vision-based robotic applications with aggressive
maneuvers suffer from the low sensing speed of standard
cameras that sample frames at constant time intervals. On
the other hand, although neuromorphic vision sensors are
promising candidates to provide the needed high-frequency
sensing, a new class of algorithms needs to be synthesized
that can deal with the uncommon output from each pixel of
these sensors, which (independently of other pixels) fire an
asynchronous stream of “retinal events' once a change in the
light field is detected. In this paper, we investigate the problem
of stabilizing a stochastic continuous-time linear time invariant
system using noisy measurements from a neuromorphic vision
sensor. We propose an H., controller that addresses this
problem and provide the critical event-generation threshold
for these neuromorphic vision sensors and characterize the
statistical properties of the resulting states. The efficacy of our
approach is illustrated on an unstable system.

I. INTRODUCTION

Regular cameras (e.g., CCD-, CMOS-based) are exten-
sively used for many robotic and vision based applications.
However, the usage of these cameras for high speed robotic
applications are limited, in particular, due to their: 1) low
temporal discretization (i.e., lack of information between
consecutive frames), 2) redundant data (i.e., the frames
contain the same information of the scene even though there
was no change in the scene’s brightness content), and 3)
huge lag between capturing and processing (e.g., extracting
features) each frame. All of these demerits hint towards a
need to consider other classes of vision sensors.

In this work we consider a bio-inspired event-based
(neuromorphic) vision sensor whose development has been
geared towards capturing the sophistication of the photosen-
sitive cells in the retina of living organisms that respond
to changes in illumination. Each pixel of a neuromorphic
vision sensor operates independently of other pixels and
fires an asynchoronous (rather than fixed interval frames
output by regular cameras) stream of brightness changes (i.e.,
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“retinal events") in the order of microseconds at the time
they occur. These events are generated once the observed
light field changes by more than a user-chosen threshold [1].
The Dynamic Vision Sensor (DVS) is the first commercially
available neuromorphic vision sensor [2].

The DVS addresses the demerits 1)-3) of conventional
cameras outlined in the first paragraph. For instance, the
retinal events are information bearing and so one avoids
processing redundant data as with camera frames. The DVS
has additional nice properties, e.g., micro-second temporal
resolution, low-latency (order of micro-seconds) resulting in
increased reactivity, high dynamic range (> 120dB) and low
power requirement, collectively making it a viable sensor
for enabling the quick computation of control commands to
facilitate aggressive maneuvers of agile robots.

Literature Review. Most existing vision based control
approaches of mobile robots rely on algorithms that are
specifically developed to process the frames from regular
cameras. In view of the DVS’ interesting properties, a
handful of recent works have been dedicated to apply these
neuromorphic vision sensors to a range of specific tasks,
e.g., for stabilizing the upright position of robotic insects
[3], for balancing an inverted pencil [4] and for controlling
an autonomous goalie [5]. Its use has also been suggested
for enabling high speed collision-free flights of autonomous
micro-aerial vehicles in complex environments [6].

While each pixel of an DVS should ideally fire a retinal
event once a change in the brightness has been detected,
this is not generally the case. In practice, a considerable
number of false events are produced (cf., e.g., [7]) and we
shall term these false events as “spurious events". There
were several attempts in [7], [8] to model the generation of
spurious events through suitable noise processes. The work
in [7] modeled these as independent Poisson processes and
proposed a proportional-derivative control scheme based on
the DVS’ spurious measurements with this model for the
task of heading regulation. For a similar task, the author
of [8] modeled ambiguities in the generation of the retinal
events through a diffusion process, deriving its inspiration
from noise models that have been used to study the event
activity in biological neurons, e.g., see [9], [10]. These works
modeled the event activity of neurons through an Ornstein-
Uhlenbeck process [11]. This Gauss-Markov process cap-
tures the diffusion that triggers a neuronal spike at the
crossing of a threshold and resets the process once an event
is produced, a model for spurious events that we will also
adopt in this paper.



Moreover, the proposed control approaches in all the
above works with the DVS are problem-specific and share
a common theme of first computing explicit state estimates
and then using these estimates for closed-loop control. But,
less restrictive conditions may be achieved by designs that
directly use the events for control rather than performing
control via state-estimation. Moreover, existing event-based
control techniques, e.g., [12] are not readily applicable.
Instead of having the flexibility to design a sensor (hence,
events) to guarantee some performance requirement, we are
given a sensor and are restrained by its inherent properties
(i.e., with no means of controlling the retinal events except
threshold design).

Contributions. To our best knowledge, this paper is the
first to address the control of a stochastic continuous-time
linear time invariant (LTI), multiple input single output
(MISO) system directly from asynchronous and spurious
neuromorphic measurements/events arriving from a DVS
without explicit state estimation. This work builds on the
authors’ past work [13] where the quadratic stabilization of
a deterministic plant with deterministically generated retinal
events was considered. Intuitively, the continuity of the
ambiguous neuromorphic measurements enables us to char-
acterize the lowest upper bound on the relative uncertainty
between the inaccessible continuous-time output and our
estimate of this output using the retinal events/measurements
we observe. Then, by designing an H,, controller that
is robust to this uncertainty, we are able to stabilize the
first moment of the noisy hybrid system and derive the
corresponding critical event threshold required for a DVS
to perform this stabilization. Moreover, we characterize the
statistical properties of the system states when using our
feedback controller.

Our solution makes use of some ideas and tools drawn
from the literature on control with limited information, in
particular, the quantized control literature, e.g., [14], [15],
[16]. Additionally, the extension of the present work for
the stabilization and regulation of a multiple input multiple
output (MIMO) noisy system with ambiguous measurements
can be readily adapted following [17].

Outline. This paper is organized as follows. In Section
I, we formulate the problem by first characterizing the
DVS model and the stochastic noise model, as well as
represent the combined LTI system and DVS model as a
noisy hybrid system. Then, in Section III, we design a
stabilizing controller for this hybrid system and present a
criterion that provides us with the least restrictive (largest)
event threshold that is required of a DVS to stabilize the
given LTI system. We also provide statistical properties of
the resulting system states. In Section IV, we demonstrate the
effectiveness of our approach via a numerical experiment.
Finally, in Section V, we present conclusions and outline
possible future work.

II. PROBLEM FORMULATION

LTI System. Consider the unstable, single input, stabiliz-
able and detectable continuous time system (see [17] for a

physical example) given by,

& = Ax + Bu + w,
§=cz,

1'(0) NN(x()vPO)v (1)

where z(t) € R™ is the system’s state with A € R"*",
u € R™ is the control input to the system with B € R"*"™,
w ~ N(0,Q) is the process noise with @ > 0 (positive
semidefinite), and ¥ € R is a scalar output of the system
with ¢ € R™*1. The first two moments of the initial state,
zo and Py = 0, are unknown but assumed to be bounded.
Note that we have no direct access to the output y, except
through the “retinal event" measurements that we obtain from
a neuromorphic camera, which we characterize next.

DVS Model. Our sensor of choice is the Dynamic Vision
Sensor (DVS), which is the first commercially available
neuromorphic sensor [2]. An ideal noiseless DVS comprises
of a photodiode that converts luminosity to a photocurrent,
denoted by g as in (I) that is then amplified in a logarithmic
fashion to detect brightness changes in real time. However,
these sensors are known to produce a considerable number
of spurious events [7].

In order to account for spurious events, we draw inspira-
tion from the event activity in biological neurons as discussed
in Section [ and consider a Gauss-Markov process known
as Ornstein-Uhlenbeck process [11] as our noise model:
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where the time constant 7. > 0 is of the order of micro-
seconds due to the DVS’ micro-second temporal resolution,
and with n ~ N(0, 1) being a scalar zero-mean unit-variance
Gaussian white noise that is statistically independent from w.
Additionally, the mean and variance of () starting at v(0)
is easily found to be (for ¢t > 0) (see, e.g., [11])

p(t) = v(0)e "7, 3)
(1) = otr. (1-e7%), (4)

and 027, represents the steady-state covariance of the station-
ary Gauss-Markov process (2)). Then, we model the spurious
events through the corruption of the trigger condition, upon
which “retinal events" are generated by each pixel of the
DVS as follows:

IT| > h, ®)
where
7 £ log, |§| + v — log, |q|, (6)

and g € R is the trigger reference (an internal state that resets
every time an event is triggered) and h > 0 is a user-defined
event threshold. Equivalently, we can consider the output y
(that we still do not have access to) as the ideal output gy
that is corrupted by a parametric noise €’ with a log-normal
distribution as follows

y = ge¥ = cze?, 7



and thus, 7 = log, |y| —log, |¢|. Using the terminology for a
hybrid system model, the trigger condition (5) is a stochastic
guard set, which we denote as D, i.e., a “retinal event" occurs
when the combined system (LTI system and DVS model)
state satisfies the guard condition, x := [z 7,q]" € D.

The k-th “retinal event" is then given by the triple:
(g, (xi(tx), yi(tr)), p(tx)) where t; denotes the timestamp
at which the “retinal event" was fired, (x;(tx), y;(tx)) repre-
sent the pixel coordinates of the ¢’th pixel where a “retinal
event" was fired and p(ty) is the polarity measurement we
obtain that we will describe next. However, in this paper,
we will only discuss the single pixel case, hence we have a
scalar output y. The extension to the case of multiple outputs
is straightforward and can be done following [17].

As we previously described, we have no access to this
output y (nor ), but instead we have access to polarity
measurements, p € {—1,0,+1} given by the events:

[ sen(r), ifxeD,
1 0, otherwise.

®)

Due to the continuity of the output trajectory y, which is
characterized by the continuous solution of @I), we know that
the event trigger for the DVS always takes place when equal-
ity holds for the trigger condition (3)). Thus, the evolution of
the trigger reference is described by

gt =qp7?, 9)
where for convenience, we define

pEehe(0,1), (10)

as the spacing of the logarithmic partitions induced onto the
output space by the logarithmic trigger condition in (3). This
choice of p in (I0) captures the range of positive values for
the event threshold A of the DVS. Then, the trigger condition
() can be equivalently re-written as
DE{x: ’y‘ zlor y‘ < p},
q P q
which explicitly defines our guard set D in terms of p.
Further, we make the following assumption regarding the
trigger reference q:

(1)

(A1) The initial trigger reference ¢(0) lies in the interval:
m < ¢q(0) < M where 0 < m < M are scalars
and satisfies p < ‘@‘ < % with y(0) € D¢, the
complement of the guard set D.

(A2) The sign of g is known at all times.

The first assumption is more realistic than the assumption
made in our previous work [13] in that the luminosity of
the environment that a DVS is turned on in may not be
known exactly, but is only known to be within some bound.
Intuitively, this assumption along with the continuity of the
output trajectory makes it possible to keep track of the
internal trigger reference at all times. The latter assumption
is only necessary for theoretical analysis when considering
the general LTI system. In practice, the luminosity is always
positive, hence ¢ is also always positive.

xt ==z
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Fig. 1: Open loop hybrid automaton of combined LTI system
and DVS model in (I2), where p and D are given in (8) and

(TT), respectively.
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Fig. 2: Controller design approach: From asynchronous reti-
nal events to continuous-time (CT) control commands.

Combined System. Combining the LTI system in (I)) and
DVS model in (9) yields the following noisy hybrid system:
. {x} [A:c + Bu+w
X = . =
q 0

= Bi } - [qu”} ’

where the polarity measurement p is given in (8) and the
stochastic guard set D in (II). The hybrid automaton that
results is illustrated in Figure

Thus, the stabilizing control problem with the DVS is:

} , x€ R"I\D,
(12)
xeD,

Problem 1. The objective of this paper is two-fold:

1) Design a feedback controller w using the polarity
measurement p from a DVS, as in (§), to stabilize the
first moment of the noisy hybrid system given in (12),
ie, lim; o E[z(t)] = 0. Moreover, quantify the least
restrictive (largest) upper-bound on the event threshold
h*, such that for any DVS with event threshold h < h*,
the controller u meets the aforementioned objective.

2) For the stabilizing controller designed for Problem 1-1,
characterize the statistical properties of the resulting
system states x(t).

III. CONTROLLER DESIGN

In this section, we will first design a feedback controller
that operates on the incoming polarity measurements p (i.e.,
based on the “noisy" frigger condition in (3)) to generate a
continuous time control signal u that solves Problemﬂ]-l, ie.,
one that stabilizes the first moment of the noisy LTI system
(I2). We are inspired by output feedback control, thus we
construct an estimator for the output signal y in Section [[TI-A]



and use the resulting estimate z as an input to our controller
K, which we will design in Section This cascade set-
up of the feedback controller, which consists of the estimator
and the feedback controller is depicted in Figure [2] In turn,
we will derive the statistical properties of the true system
states, i.e., solve Problem [T}-2.

A. Design of estimator for y

Since we know that event trigger for the DVS always takes
place when equality holds for the trigger condition (5) and
the output trajectory y is continuous (cf. (Z)), ¢ coincides
with y whenever an event is produced. Hence, as depicted
in Figure [2] it seems natural to consider a scaled estimate of
q as an estimate of y

» =X, 0£)\eR, (13)

where A is the scaling and ¢ is an estimate of ¢, which we
will derive next.

As there is no additional sensor to appropriately quantify
the lack of information between the retinal events, we con-
sider a Zero-Order-Hold (ZOH) on the retinal events arriving
from the DVS and an estimate of the trigger reference ¢ that
follows the same evolution of (9) (cf. [17] for an illustration
of the its evolution):

" =ap7?, (14)
where §(0) and §(t) are characterized in the following.

Lemma 1. [I7, Lemmas 1 and 2] The evolution of the

estimate of the trigger reference {(t) for all t,
a(t) = (L+Ag)q(t), [Aq] <, (15)

yields the least restrictive z in (13)), if G(0) is chosen as

2mM
5(0) —
00 = 3 m
which produces the minimal |Ag| with bounds,
5 — M—-m
T M+m

Moreover, we can quantify the closeness of the designed
continuous-time signal z to the unknown output y, given in
the following lemma and visualized in Figure [3]

Lemma 2. [17, Lemma 3] The estimate q estimates y with
bounded (asymmetric) uncertainty:

pY < q= (16)

A p

Note that Figure [3| was given with unit amplification, A =
1, i.e.,, z = ¢, which illustrates the unequal length of the
line segments representing positive (p = +1) and negative
(p = —1) transitions in blue and red, respectively. Intuitively,
these unequal lengths motivate the need for the scaling A
which provides us a symmetric bound on the absolute relative
error between z and y signals.

Lemma 3. The absolute relative error between the
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Fig. 3: Analysis of the signal z (A = 1): Red/solid lines
are due to positive transitions (p = +1) while blue/solid-star
lines are due to negative transitions (p = —1).

1) z and y signals is upper-bounded,

|A]| < 0,
where A, £ Z;—y, z = A and y given in (),
2) z = E[z] and 5 = Ely| signals is also upper-bounded
|A.| <6,
where A, £ %
with a symmetric upper-bound 5., = %%Zg; when we choose
)\ 2 M4m)p
— M+mp? "

Proof. See Lemma 4 of [17] for the proof of 1). To see 2),
note that the final inequality in the proof of Lemma 4 in [17]
is given by

1-6)y<z-y<(1+4d.)y.
Then, taking the expectation of the previous inequality gives,

Z—9

_6z S S 6za

thus, the result follows. [ ]

In fact, our choice of ¢(0) and ), that results in symmetric
upper-bounds is optimal, formally stated below.

Proposition 1. [17, Theorem 3] The choice of ¢(0) and A
in Lemmas |l| and |3|leads to the least restrictive (smallest) p,
which will lead to the least restrictive threshold h (cf. (10)).

B. Design of feedback controller K

To solve Problem [T}1, instead of directly synthesizing a
stabilizing controller for the uncertain noisy hybrid system
of (I2), which may be difficult and even harder to analyze,
we resort to finding sufficient conditions for stabilizing the
first moment of this noisy hybrid system by considering the
stability of a deterministic auxiliary uncertain system in the
following proposition, and analyze the resulting statistical
properties of the system states later.

Proposition 2. The first moment of the noisy hybrid system
(I2)—with (A, B,c’) stabilizable, detectable and p € (0,1)
—can be stabilized via the linear controller K through the



P

u K < 4

Fig. 4: H, control problem with generalized plant P and
controller K given in (T9) and (20), respectively.

o2
control law u = Kgio ] with Ele¥] = e(”+7) whose
parameters are defined in (3) and (@), respectively, if the
following deterministic auxiliary uncertain system
i = Ai+ Bi,
z =(14+A)/TE|A| <6,
can be quadratically-stabilized via the controller K, with
= KZ and §, given in Lemma [3]

a7

Proof. First, taking the expectation of u = 5], We have

Kgpem
K(1+ A)gl
=K(1+A,)dz

u 2 Elu] = KIIEE[[:;}}

where E[z] £ z = (1+ A,)7 in view of the second result of
Lemma [3] and taking the expectation of (7) with e” being
independent of 2 and Z £ E[z] is the first moment of the
system state. Moreover, taking the expectation of the state
equation in (I)) and substituting @, we obtain

r = AZ + Bu
=AZ+ BK(1+A,)dz

This is clearly an instance of (I7) with z =%, u = @ = K2
and A, = A. Thus, the propos2ition holds directly.

Furthermore, E[e¥] = e(’”%) can be computed from the

properties of a log-normal distribution. ]

We are now ready to state the solution to Problem 1-1 in
the following theorem.

Theorem 1. The first moment of the noisy hybrid system
(12)—with (A, B, ') stabilizable, detectable and p € (0,1)
—can be stabilized via an H., controller, provided that the
event threshold h in (B) of the DVS is upper-bounded by

( ) y+1

y=1°
where v > 1 is the H, norm of the closed-loop uncertain
system (T7).

Proof. This result is an adaptation of Theorem 2 of [17].
However, for completeness we briefly re-state here the es-
sential parts of the proof.

Due to the presence of a bounded uncertainty A in the
deterministic auxiliary uncertain system (I7), it is natural to
represent the problem in the Robust Control framework. The

h < h* =log, (18)

- A+
zt =z, 1wl =,

gt =gp7P. G" =gp?

Az + Bu+w
qal 0

T.| = |Acxe + B,
q 0

) u = Cete + Degly
¢Ele”] z =)\

x

q c R2nH2

[z] c Rn+l \D

c

q

Fig. 5: Closed loop hybrid automaton of combined LTI
system, DVS model and H., controller, where 7 and D
are given in_(6) and (@) respectively, and with h < h*

in Theorem |1 I and Efe’] = e\ o

H, control problem that results for this closed loop system
is shown in Figure [] with the generalized plant P

A | Onxn B
P= Inxn Onxn  Onxm (19)
c c 01xm

and the state space description of the H., controller K

A | B
h= [%W]

with input Z and can be synthesized under some mild
assumptions given in [18].

Then, the finite H,, norm of the closed-loop system
(P,K) in Figure [ is found as |[T:q(s)||p. < 7, via
a ~y-iteration algorithm [18], where T;;(s) is the transfer
function from the bounded disturbance @ due to A to the
performance variable .

Finally, the application of the small gain theorem yields
the upper bound on J,, such that |A| < 4,

(20)

1
5, <6 &
Y

which can be tolerated to render the closed loop sys-
tem (P, K,A) quadratically stable or equivalently robustly
asymptotically stable [19].

Now, in view of §, = M= p from Lemmal we obtain

= M+m

*

p* = /(&)1 1 21, Next, from our definition of p in (T0), we
obtain an upper bound on the tolerable event threshold
h<h 2log, \/(57) r+l
- ge M ’y _ 1 °

Finally, by Proposition 1, the H, controller also stabilizes
the first moment of the noisy hybrid system (T2). [ ]

In summary, the resulting closed loop hybrid automaton
that combines the different steps in the design of K, A and
¢ is illustrated in Figure 5



C. Statistical properties of system states x

We now investigate the properties of the system states x
and state the solution to Problem 1-2 in the following.

Theorem 2. For the controller K designed in Theorem
[1} the closed-loop noisy hybrid system (12) has a solution
{z(t)} on the time-interval [0,T) in the mean square sense.
Moreover, this solution has these additional properties:

1) The first moment of the system is quadratically stable;
so, lim;_, o E[z(t)] = 0.

2) {x(t)} is mean square continuous in [0, T).

3) The trace of the second moment of the system—
P, 2 Elz(t)x(t)T)—is finite, ie., trace(P;) =
Elz(t)Tz(t)] = E[||z(t)|%] < oo is finite Vt € [0, T).

4 [T E2(0)]?)dt < oc.

5) x(t) — zq is independent of {dw(T),T > t} for every
te[0,7]

Additionally, the process {x(t)} is a Markov process and, in
the mean square sense, is uniquely determined by the initial
condition x.

Proof. The proof of 1) follows from Theorem|[I} To show that
the rest of the properties holds, we note that the continuous
dynamics of our closed loop stochastic differential equation
(SDE) is readily found upon combining the LTI system in
(I) with the control law u = K @ where K is given in
(20) to obtain
T A BC.| |z BD.| =z I
)= (0 Sl U5t i) Lo
02

with Ele’] = e(“+7). The signal z, given in (I3) and
(]E[), remains constant between events, thus the continuous
dynamics above is a linear SDE between events. Moreover,
during the ‘retinal’ events, the continuous states do not jump,
i€, 2T =x and x} = z.. Hence, in the parlance of hybrid
systems, we have a stochastic switched linear system.

During continuous flow (between events), since we have
a linear SDE, it can be easily verified that the assumptions
in [20, Theorem 4.5] are satisfied and hence, all the other
properties (besides 1) hold during continuous flow. On the
other hand, during the events, the continuous closed loop
states do not jump and thus, the statistical properties of the
states, which include z, are not affected in the mean square

sense (cf. relevant definitions, e.g., mean square continuity,
in [20]). Therefore, the theorem holds. ]

IV. NUMERICAL EXPERIMENT

We now demonstrate the effectiveness of our proposed
approach with the following unstable, but stabilizable and
detectable, system:

o 9 o[l -5l

with @ = 0.03 - I5« . First, we design an H, controller for
the auxiliary uncertain system in (T7) through the hinfric
command in MATLAB, with m = M = 1 in assumption
(Al), 7. = 1073 (sec) and o, = 50 in (@) and obtain

— — 10 out of 100 realizations

s Mean over 100 realizations

0 0.1 0.2 0.3 0.4 0.5 0.6
time, sec

— — 10 out of 100 realizations
s Mean over 100 realizations

,,,,,

0 0.1 0.2 0.3 0.4 0.5 0.6
time, sec

(a) Evolution of the states of the closed-loop system.

— — 10 out of 100 realizations
wems Mean over 100 realizations

0 0.1 0.2 0.3 0.4 0.5 0.6
time, sec

(b) Evolution of the second moment of the noisy hybrid system (T2).

1

0.5} .
O L I I L L
0 0.1 0.2 0.3 0.4 0.5 0.6
time, sec
0
s -10 7
-20 7
230 L L L L L
0.1 0.2 0.3 0.4 0.5 0.6
time, sec

(c) Estimate of the trigger reference and the control command for an
example realization.

Fig. 6: Numerical Example: Stabilization of a stochastic
unstable system.

v = 1.3867 and A" = 0.9100. Then, we utilize this H,
controller for the true system (I). The noisy hybrid system
(T2) was discretized and integrated via the Euler-Maruyama
scheme with a temporal discretization of 1076 (sec). The
simulation results are presented in Figure [6] Figure [6(a)]
shows that the controller stabilizes the first moment of the
system. It can be observed that the realizations of the plant



become concentrated near the origin with increasing time.
On the other hand, Figure [6(b)| also shows that the trace
of the second moment, trace(P;) £ E[z7x] = E[2? + 22],
remains finite and appears to converge to a finite value. For
completeness, we also plotted the estimate of the trigger
reference and the corresponding command inputs for a

representative realization in Figure

V. CONCLUSIONS AND FUTURE WORK

The Dynamic Vision Sensor (DVS) is a neuromorphic
sensor, which is a recent addition to the class of vision
sensors. The nice properties of the DVS promise to facilitate
agile robotic maneuvers. However, existing vision algorithms
cannot be directly adapted to process these events; thus, new
algorithms need to be developed.

In this work, we proposed an H, controller that stabilizes
the first moment of noisy unstable LTI systems using DVS’
noisy measurements, while showing that the resulting system
states have nice statistical properties. In addition, we also
provide the least restrictive upper bound on the event thresh-
old, h*, for the DVS such that the pair (A, B) is stabilized.
This work can be viewed as an initial attempt to locally
stabilize a noisy nonlinear system about some operating point
using corrupted DVS measurements.

There are many interesting directions for future research.
An important one is to develop a control scheme that
can handle an accurate description of the environment’s
luminance, e.g., through an integrative sensor model, since
a linear varying luminance profile may not be regularly
encountered in practice. Finally, it would be crucial to
develop control schemes for multiple input multiple output
(MIMO) systems that have a nonlinear description, e.g., by
first considering linear time-variant systems [21], to tackle
real world applications. The issue of designing stabilizing
controllers for systems with a nonlinear description has been
acknowledged by related works as being the bottleneck to
facilitate basic control-theoretic applications with neuromor-
phic sensors. The robust framework of the current work may
serve as a viable route to tackle this problem.
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