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Supermodular Batch State Estimation in Optimal
Sensor Scheduling
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Abstract—This work addresses the problem of activating, at
each time-step in a finite time horizon problem, a subset of
available sensors to generate a “high quality” estimate of the
state of a discrete-time linear system operating under limited
resources. We propose a sensor schedule that minimizes the
mean square estimation error of the batch state vector of
the system—the batch state estimation (BSE) problem. Due to
the presence of limited resources, we address the cardinality-
constrained BSE problem, which is inherently combinatorial
and computationally intractable when working with large-scale
systems. This NP-hard complexity is overcome by employing a
greedy algorithm, which returns a near-optimal sensor schedule
with performance guarantees when minimizing a supermodular
objective over matroids. To this end, we prove (despite the
existence of counter-examples in literature) that our objective
function is supermodular when the batch prior information matrix
is a strictly-diagonally-dominant M-matrix (with a constraint on
its inverse and conditions on the measurement model). Hence, we
obtain a near-optimal solution to the BSE problem via a greedy
algorithm. Additionally, we provide its time complexity.

Index Terms—Batch state estimation; Optimal scheduling; Ap-
proximation algorithms; Sensor networks; Large-scale systems.

I. INTRODUCTION

Sensor scheduling algorithms provide a formal way for
allocating at each time-step, e.g., in a finite time horizon
problem, a fraction of the total number of available sensors in
order to observe the state of a dynamical system. Thus, sensor
scheduling problems are inherently combinatorial and become
computationally intractable when dealing with large-scale sys-
tems. The need for such algorithms arises for challenging
information gathering applications that are required to operate
under resource constraints, e.g., limited communication band-
width and battery life, which limits the number of sensors
that can be activated [1]. Thus, one seeks to find an optimal
sensor schedule that specifies a given number of sensors to be
selected at each measurement time-step by optimizing a given
performance metric.

The current work addresses the finite time horizon sensor
scheduling problem by selecting, for each time-step, the set of
sensors that maximizes the quality of the state estimate of a
discrete-time linear time-variant system. One measure of “best
quality” (in a probabilistic sense) of state estimates are those
resulting from sequential minimal variance estimation (i.e.,
Kalman Filtering), which sums the minimum mean square
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estimation errors of the individual time-steps over a finite
time horizon. However, the estimation error from sequential
methods are higher than from batch minimum variance estima-
tion, which minimizes the mean square estimation error of the
batch state vector of the system across measurement times [2,
Chap. 6], i.e., the trace of batch estimation error covariance.
We term this the batch state estimation (BSE) problem or
equivalently the multiple time-step optimal sensor scheduling
problem. Hence, the sensor schedule resulting from the BSE
problem would be of higher quality than the schedule arising
from sequential methods.

The BSE problem is combinatorial (NP-hard complexity)
and quickly becomes computationally demanding for large-
scale systems; more precisely, the number of sensor subsets
that need to be considered grows factorially with the total
number of sensors available for use. Therefore, we seek to
exploit structural properties of the considered cost function to
make use of efficient polynomial-time algorithms that yield a
near-optimal sensor schedule with performance guarantees.

Literature Review. The sensor scheduling problem has been
addressed by algorithms developed based on: randomization
of schedules [3], convex relaxations [4] and tree pruning [5];
however, these often perform poorly. We are interested in
utilizing the submodularity property of the considered cost
function to identify suboptimal sensor schedules that can be
approximated in polynomial time via greedy algorithms that
have performance guarantees [6].

In the context of sequential Kalman filtering (KF), several
researchers have considered the monotone non-increasing and
supermodular property for logdet of the error covariance. [7]
considered the single time-step case, [8] the case with a finite
observation interval, while [9] showed that this metric is, in
general, neither submodular nor supermodular over multiple
time-steps. Moreover, counterexamples have been presented
against the trace of the estimation error covariance being a
supermodular and monotone non-increasing set function in [9]
for sensor scheduling and [10] for sensor selection problems.
However, [11] recently showed that the aforementioned struc-
tural properties of the considered cost function hold under
some loose conditions on the system’s dynamics in the single
time-step KF framework.

Meanwhile, for the batch state estimation problem, the
logdet of the batch error covariance has been shown to be
supermodular in [12]. However, the supermodularity of trace
of the batch estimation error covariance has, to our best
knowledge, not been considered.

Contributions. The primary contribution of this work lies in
extending the results for the single time-step KF in [11] to the
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multiple time-step BSE problem by proving that the trace of
the batch estimation error covariance is a supermodular and
monotone non-increasing set function if: 1) the batch prior
information matrix (comprising of the process model) is a
strictly-diagonally-dominant M-matrix (with a condition on its
inverse), and 2) the measurement matrices have a monomial
representation, i.e., each sensor measures a single state of the
system. This allows for the BSE problem to be addressed
via a greedy heuristic whose resulting solution we prove to
be within a factor of 1

2 from the optimal solution, which
constitutes our second contribution. Lastly, we prove that this
greedy algorithm has polynomial time complexity that is cubic
in the time horizon.1

II. PROBLEM FORMULATION

This section formalizes the BSE problem. In particular,
section II-A builds the system and measurement models that
we will work with. Then, in Section II-B we state our
cardinality-constrained sensor scheduling problem.

A. Network Dynamics

We assume a sensor network that consists of m sensors—
with G , {1, . . . ,m} denoting the set of indices to identify
a sensor—each of which outputs a scalar measurement and
operates in discrete-time to measure the state of a network’s
dynamics that evolves in discrete-time according to the fol-
lowing discrete-time linear time-variant representation:

xt+1 = Atxt + ut + wt, x0 ∼ N (x̂0, P0), (1)

where xt ∈ Rn is the system’s state at time t, At ∈ Rn×n
prescribes the system dynamics, ut ∈ Rn is a given control
input and wt ∼ N (0,Wt) is the process noise of appropriate
dimension with covariance matrix Wt � 0. The initial state
x0 of the system follows a Gaussian distribution with given
mean x̂0 and given covariance P0 � 0.

We now set up the sensor scheduling model by requiring
that at each t, at most rt of the m sensors (rt ≤ m,∀t) be
activated to observe the state of system (1). To this end, we
have the following measurement model:

yt = StCxt + Stvt, (2)

where C ∈ Rm×n is the measurement matrix and vt ∼
N (0, Vt) is the measurement noise of appropriate dimension
with covariance matrix Vt � 0 and is statistically independent
of the process noise. Further, St ∈ {0, 1}rt×m is the binary
sensor selection matrix that picks out the rt rows of C, which
corresponds to the rt sensors that need to be activated at time-
step t. Now, for the BSE problem with a finite time horizon
t ∈ (1, . . . , T ), we first define:

St , {j ∈ G : [St]ij = 1 for some i ∈ (1, . . . , rt)} (3)

1Notation: The set of natural numbers is denoted by N, and the set of real
numbers by R. The cardinality of a set S is denoted by |S|. For a matrix
A, its transpose is A>. We write A � 0 (resp. A � 0) to denote that A
is symmetric and positive semi-definite (resp. positive definite). The symbols
0n×n, In×n denote an n × n matrix of zeros and the identity of size n,
respectively. For a random variable x∈Rn, the expected value of x is E[x],
and its covariance matrix is Cov(x) = E

[
(x−E[x])(x−E[x])>

]
.

to be the set of indices of the sensors activated at time-step t.
Also, we define S1:T , (S1, . . . ,ST ). To facilitate our proofs,
it will be convenient to work with the batch information
matrix form for the batch state vector x1:T = [x>1 , . . . , x

>
T ]>

with batch posterior error covariance matrix P1:T (S1:T ) ,
Cov(x1:T ), whose closed form is given, e.g., in [12, eq. (12)].
Thus, we have the following definition.

Definition 1 (Batch Information Matrix). The inverse of
the batch posterior error covariance matrix P1:T (S1:T ) is
called the batch posterior information matrix: Ω1:T (S1:T ) ,
P1:T (S1:T )−1 and is positive definite by construction. More-
over, the inverse of the batch prior error covariance matrix P̄1:T

is called the batch prior information matrix: Ω̄1:T , P̄
−1
1:T and

represents the “process” contribution.

In view of Definition 1, the batch information matrix can
be put in following additive structure form

Ω1:T (S1:T ) = Ω̄1:T + ∆1:T (S1:T ), (4)

where ∆1:T (S1:T ) represents the contribution due to the
“measurements”. Equation (4) is derived in Appendix A.

The goal of this work is to come up with a sensor schedul-
ing algorithm that selects the set of sensors S1:T so as to
“minimize” the square of the batch state estimation error. We
formalize this notion in the following section.

B. Multiple Time-Step Optimal Sensor Scheduling Problem

The minimum variance linear estimator x̂1:T , E[x1:T ] is
obtained by minimizing the square of the estimation error
of the batch state vector: E[‖x1:T − x̂1:T ‖22|y1:T ], and this
objective corresponds to trace of the batch posterior estimation
error covariance P1:T (S1:T ). Our goal is to identify the sensor
set S1:T , by selecting, at each time-step t, a subset rt (out of
m sensors) that minimizes the aforementioned cost. Let us
formalize this by introducing the following set function:

g(S1:T ) , trace(P1:T (S1:T ))− trace(P̄1:T ), (5)

which captures the change in the square of the batch state
estimation error given a sensor set S1:T , where g(S1:T ) ≤ 0
since the trace of the posterior error covariance is no larger
than that of the prior error covariance P̄1:T . The minimization
of g(S1:T ) is equivalent to minimizing trace(P1:T (S1:T )) since
the second term in (5) is a constant and is used to normalize
the cost function (see Definition 4).

The solution of the following problem results in the sensor
set S1:T that minimizes g(S1:T ).

Problem 1 (Cardinality-Constrained Multiple Time-Step Opti-
mal Sensor Scheduling). For each t ∈ (1, . . . , T ) in the batch
state estimation problem: given a sensor budget, rt (≤ m) ∈
N>0 on |St|, i.e., the number of sensors that can be used at
time-step t, find the optimal sensor schedule:

minimize
St⊆G, ∀t∈(1,...,T )

g(S1:T )

subject to |St| ≤ rt, ∀t ∈ (1, . . . , T ).

It is apparent that Problem 1 is combinatorial whose exact
solution is computationally intractable when dealing with
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large-scale systems. Thus, for an amenable polynomial-time
approximate solution (with performance guarantees) by em-
ploying a greedy algorithm, we resort to proving that g(S1:T )
is a supermodular and monotone non-increasing set function
for a given choice of sensor set S1:T . To proceed, we impose
the following “loose” assumption on the choice of the sensor
matrix C defined in (2).

Assumption 1 (Monomial Measurement Matrix and Diagonal
Measurement Covariance Matrix). We assume that

1) The measurement matrix C in (2) has at most one non-
zero entry in each row, and

2) The measurement covariance Vt is diagonal.

Remark 1. (Observability and Monomial Measurement Ma-
trix) Assumptions 1.1 and 1.2 are commonly made in the
sensor scheduling literature and are justified in many practical
tasks ranging from robotics [11] to energy [8]. Moreover, if
the process model (1) and measurement model (2) are time-
invariant and the system is observable, then Assumption 1.1
is no longer necessary, since a fully populated measurement
matrix C in (2) can be conveniently transformed into the
observable canonical form; thus, yielding a monomial matrix
representation (similar to [13, Eq. (18)]).

III. SUPERMODULARITY IN MULTIPLE TIME-STEP
OPTIMAL SENSOR SCHEDULING

Before proving our main result, we first review some notions
on submodularity of set functions.

A. Submodular Functions

Submodularity is a structural property of set functions.
For the finite time horizon problem, define the ground set
G1:T to be the cartesian product {1, . . . , T} " G, then, a set
function is defined as g : 2G1:T → R. Also, we adopt the
following notation for the multiple time-step case: for two
subsets At, Bt ⊆ G at each t, we have that
• A1:T ⊆ B1:T denotes that At ⊆ Bt, ∀t ∈ (1, . . . , T ).

Definition 2 (Marginal Gain). For a finite set G1:T and a set
function g : 2G1:T → R, the marginal gain of g at a subset
S1:T ⊆ G1:T with respect to an element e ∈ G1:T \ S1:T is:

MGg(e|S1:T ) , g(S1:T ∪ {e})− g(S1:T ).

Definition 3 (Submodularity and Supermodularity). Given a
finite set G1:T , a set function g : 2G1:T → R is submodular
if for all subsets S1:T ⊆ S ′1:T ⊆ G1:T and an element e ∈
G1:T \S

′

1:T , we have

MGg(e|S1:T ) ≥ MGg(e|S
′

1:T ). (6)

A function g is said to be supermodular if −g is submodular.

Equation (6) captures the “diminishing returns” property,
i.e., one achieves a higher cost in adding a new element to a
smaller set than adding the new element to a larger set.

Definition 4 (Normalized and Monotone). Given a finite set
G1:T , a set function g : 2G1:T → R is normalized if g(∅) =

0, i.e., empty set carries no value, and the set function is
monotone non-increasing if for all subsets S1:T ,S

′

1:T ⊆ G1:T :

S1:T ⊆ S
′

1:T ⇒ g(S1:T ) ≥ g(S
′

1:T ),

and monotone non-decreasing if

S1:T ⊆ S
′

1:T ⇒ g(S1:T ) ≤ g(S
′

1:T ).

Theorem 1 (Proposition 1.1 in [14]). Given a finite set G1:T ,
a set function g : 2G1:T → R is submodular ⇐⇒ the derived
set functions ge : 2G1:T \{e} → R,

ge(S1:T ) , MGg(e|S1:T ) , g(S1:T ∪ {e})− g(S1:T )

are monotone non-increasing for all subsets S1:T ⊆ G1:T and
elements e ∈ G1:T \S1:T .

Next, we prove that the set function g(S1:T ) defined in (5)
is monotone non-increasing and supermodular in the choice
of the sensor set S1:T .

B. Supermodularity in Batch State Estimation

Previous work [9] dealing with the single time-step case
provided counterexamples to show that trace of the error
covariance is not a supermodular set function in general.
Additionally, it has been shown through a simple example
in [11] that, for the single time-step case, the sensor set
resulting from the maximization of the trace of the information
matrix (i.e., the T-optimality criterion [15]) is not equivalent
to sensor set resulting from the minimization of the trace of
the error covariance. Our goal here is to provide conditions on
the system dynamics under which the trace of the batch error
covariance is a supermodular set function. We begin with the
following proposition, which we prove in Appendix B.

Proposition 1 (Decrease in Batch Estimation Error). The set
function g(S1:T ) in (5) is normalized and monotonically non-
increasing in the choice of the sensor set S1:T .

We now present definitions of two classes of matrices that
the main result below rests upon (see proof in Appendix C).

Definition 5 (Strictly-Diagonally Dominant M-matrix [16]).
A matrix M ∈ Rn×n is an M-matrix if each: 1) off-diagonal
entry is non-positive (Mij ≤ 0), and 2) eigenvalue has a
positive real part. An M-matrix M is said to be strictly
diagonally dominant if the following inequalities hold:

|Mii| >
∑
j 6=i

|Mij |, ∀i = 1, . . . , n. (7)

Definition 6 (Strictly Ultrametric Matrix [17]). A matrix U ∈
Rn×n with elements [Uij ] is a strictly ultrametric matrix if

1) U is symmetric with non-negative entries
2) Uij ≥ min{Uik, Ukj}, ∀(i, k, j) ∈ {1, . . . , n}
3) Uii > Uik, ∀(i 6= k) ∈ {1, . . . , n}

Theorem 2 (Supermodularity Condition). Under Assumption
1, the set function g(S1:T ) defined in (5) is supermodular with
respect to the sensor set S1:T if the batch prior information
matrix Ω̄1:T in Definition 1 is a strictly-diagonally-dominant
M-matrix with strictly ultrametric inverse.
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One can easily check the conditions of Theorem 2 based
on Definitions 5 and 6. For instance, the assumptions are
satisfied for a relatively common assumption of a diagonal
prior covariance matrix (hence, strictly ultrametric) that results
in a diagonal prior information matrix (thus, an M-matrix).
Moreover, [18, Sec. 8.14] showed that for the blocking ex-
periment design problem, information matrices are Laplacian
and thus M-matrices. Note also that the empirical evidence
presented in [11] hints that the strictly-diagonally-dominant
and strict ultrametric inverse requirements on Ω̄1:T can be
relaxed while still guaranteeing supermodularity; hence the
performance guarantee in Theorem 3 still applies.

C. Greedy Algorithm

We are now ready to present the greedy algorithm that
can be used to approximate the solution of Problem 1. As
the solution to Problem 1 is NP-hard [19], we propose a
polynomial time approximation algorithm (i.e., Algorithm 1)
and prove its associated performance guarantees for the present
problem. To this end, we first define the following:

Definition 7 (Independence Systems and Matroids [20]).
Given a finite set N together with a collection of sets F ⊆ 2N ,
the pair (N,F) is:
• an independence system, if

– the empty set is independent, i.e., ∅ ∈ F , and
– every subset of an independent set N is independent,

i.e., for each Y ⊆X⊆N , X ∈ F ⇒ Y ∈ F .
• a matriod, if it is an independence system and for any
X,Y ∈ F and |X| > |Y |, there exists an element z ∈
X\Y such that Y ∪ {z} ∈ F .

The following greedy heuristic, adapted from [6, pg. 5],
approximately solves Problem 1 for the pair (N,F) and has
been defined for the present setting as

N,G1:T ,F ,{S1:T ∈2N : |St| ≤ rt,∀t∈ (1, . . . , T )}, (8)

where G1:T has been defined in Section III-A and the set F
denotes the particular sensor set belonging to the power set of
N (or equivalently, G1:T ) that satisfies the prescribed sensor
budget requirements for the finite time horizon problem.

Algorithm 1 iteratively builds the sensor set S1:T ,
(t,St)Tt=1, with St being the set of sensors activated at time-
step t, from the set N = G1:T . Note that the batch state
estimation problem is solved for each e ∈ N t−1 in Line
5 of Algorithm 1 and we propose the use of the Rauch-
Tung-Striebel (RTS) smoother algorithm [2, Section 6.1.1.2],
comprising of forward (Kalman Filter) and backward passes,
which has lower time complexity than batch matrix inversion.

Next, we provide the performance guarantees and the time
complexity of Algorithm 1 (will be proven in Appendix D).

Theorem 3 (Performance Guarantee and Time Complexity).
This theorem is comprised of two parts:
• Performance Guarantee: If the set function g(S1:T )≤ 0

in (5) is normalized, monotone non-increasing and su-
permodular in the choice of the sensor set S1:T , then,
Algorithm 1 enjoys the following guarantee:

Algorithm 1: Greedy Algorithm for Problem 1.

1 Input: N, F , g(S1:t);
2 Output: Greedy solution (S1:T ) ;
3 S01:T ← ∅, N0 ← N , iteration i← 1 ;
4 while N i−1 6= ∅ or Si−11:T ∪ {j} 6∈ F (∀j ∈ N i−1) do
5 Select e(i)∈ arg min

e∈Ni−1

MGg(e|Si−11:T ) with ties settled

arbitrarily;
6 if |Si−11:T ∪ {e(i)}| 6∈ F then
7 N i−1 ← N i−1\{e(i)} ;
8 continue (go to line 4) ;
9 else

10 Si1:T ← S
i−1
1:T ∪ {e(i)} ;

11 N i ← N i−1\{e(i)} ;
12 end
13 i← i+ 1 ;
14 end

g(SG1:T )
≤ 1

2g(S∗1:T )
⇔ trace(P1:T (SG1:T ))
≤ 1

2 (trace(P1:T (S∗1:T ))+trace(P̄1:T ))
,

where S∗1:T is the optimal solution to Problem 1 and SG1:T
is the greedy solution resulting from Algorithm 1.

• Time complexity: Algorithm 1 has a time complexity of
O
(
mn2.37T 2

∑T
t=1 rt

)
= O

(
mn2.37T 3 max

t={1,...,T}
rt
)
.

The above performance guarantee is the worst-case bound
and the greedy algorithm often performs much better in prac-
tice. The time complexity of Algorithm 1 is also lower than
the state-of-the-art multiple time-step scheduling algorithm
based on semidefinite relaxation in [21] that was reported
by [12] to be O

(
(maxt∈(1,...,T ) r

2
t )T

2(nT )2.5
)
. Additionally,

no performance bounds were given for the convex relaxation-
based sensor scheduling algorithm in [21].

IV. CONCLUSION AND FUTURE WORK

For the batch state estimation (BSE) problem, we derived
sufficient conditions on the prior information matrix so that the
cost function we seek to minimize—trace of the batch error
covariance—is a supermodular and monotone non-increasing
set function; thus, we obtain a near-optimal solution to the
BSE problem via a greedy heuristic, whose performance
guarantees and time complexity can be rigorously proven.
A natural extension of this work is to devise scheduling
algorithms for nonlinear systems in the face of measurement
noise and outliers to facilitate on-board decision making for
complex robotics applications, e.g., Simultaneous Localization
And Mapping (SLAM). Additional future work includes the
simulation of large-scale systems.
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APPENDIX

A. Derivation of the Batch Information Matrix (4)
Let w1:T = [w>1 , . . . , w

>
T ]>. Then, the batch form of (1)

can be re-written as

u1:T = H̄1:T x1:T − w1:T , (9)

where the k-th row of H̄1:T ∈ RnT×nT comprises of the tuples
(−Ak, In×n) with −Ak+1 being placed below In×n of the k-
th row. Now, let S1:T denote a matrix of diagonal form whose
diagonal entries are comprised of the sensor selection matrices:
S1, . . . ,ST . Similarly, C1:T denotes a block diagonal matrix
with the measurement matrix C on each of its T diagonal
entries and define v1:T = [v>1 , . . . , v

>
T ]>. Then, the batch form

of (2) can be written as

y1:T = H1:T x1:T + S1:T v1:T , (10)

where S1:TC1:T , H1:T ∈ R
∑T

t=1 rt×nT is a matrix of diag-
onal form whose diagonal elements comprise of the matrices:
S1C, . . . ,STC. Finally, combining (9) and (10),[

u1:T
y1:T

]
=

[
H̄1:T

H1:T

]
x1:T +

[
−w1:T

S1:T v1:T

]
, (11)

then, the “optimal” (i.e., in the sense of minimum variance)
least squares estimate of (11) based upon the two information
subsets (u1:T , y1:T ) is given by application of the Gauss-
Markov theorem [2, Chap. 2],

x̂1:T =

(
H̄>1:TW

−1
1:T H̄1:T +H>1:T

(
S1:TV1:TS>1:T

)−1
H1:T

)−1
[
H̄>1:TW

−1
1:Tu1:T +H>1:TS1:TV

−1
1:T y1:T

]
and it is well known [2, pg. 21] that the batch information
matrix is given by the term inside the inverse of solution
above. Now, noting that

(
S1:TV1:TS>1:T

)−1
= S1:TV −11:T S>1:T

because S1:T , V1:T are block diagonal matrices with S1:T being
a binary matrix and using the definition H1:T , S1:TC1:T in
the above expression, we have

Ω1:T (S1:T ) = H̄>1:TW
−1
1:T H̄1:T + C>1:TJV

−1
1:T JC1:T (12)

, Ω̄1:T + ∆1:T (S1:T ),

where J , S>1:TS1:T , which is the product of monomial
matrices and hence has a diagonal form. Further, W1:T , V1:T
represent block diagonal matrices, of appropriate dimensions,
and are comprised of the noise covariance matrices of the
batch process noise w1:T and the batch measurement noise
v1:T , respectively. Moreover, the “measurement” contribution
term, defined as ∆1:T (S1:T ), can be further simplified:

∆1:T (S1:T ) , C>1:TJV
−1
1:T JC1:T = C>1:TJV

−1
1:TC1:T , (13)

where the first equality follows from J, V1:T being block
diagonal matrices (thus, JV −11:T = V −11:T J) with the property
J2 = J due to the definition of S1:T .

B. Proof of Proposition 1

Proof. To show that the set function g(S1:T ) defined in (5)
is normalized, for the finite time horizon case, note that
Ω̄1:T in (4) is a constant matrix and so P̄1:T , Ω̄−11:T is a
constant matrix. Thus, it is straightforward to see that g(∅)=
trace(P1:T (∅))−trace(P̄1:T ) = trace(P̄1:T )− trace(P̄1:T ) =
0; hence, this set function is normalized by Definition 4.

We now prove that g(S1:T ) is monotone non-increasing in
accordance with Definition 4: S1:T ⊆ S ′1:T ⇒ g(S ′1:T ) ≤
g(S1:T ). From Definition 1 for a sensor set S̄, we have
P1:T (S̄) , Ω1:T (S̄)−1 =

(
Ω̄1:T + ∆1:T (S̄)

)−1
. Further, we

have ∆1:T (S ′1:T ) � ∆1:T (S1:T ) since more information is
gained by using more sensors and by the positive definiteness
of the prior information matrix ⇒ Ω̄1:T + ∆1:T (S ′1:T ) �
Ω̄1:T + ∆1:T (S1:T ) ⇒ P1:T (S ′1:T ) � P1:T (S1:T ) ⇒
P1:T (S ′1:T ) − P̄1:T � P1:T (S1:T ) − P̄1:T since we have
subtracted a positive definite constant matrix P̄1:T on both
sides of the inequality and finally, taking trace of both sides,
we have our desired result: g(S ′1:T ) ≤ g(S1:T ). �

C. Proof of Theorem 2

Proof. We now prove that g(S1:T ) is supermodular in this
choice of the sensor set. To this end, we equivalently prove
that f(S1:T ) , −g(S1:T ) is submodular in this choice of the
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sensor set. Thus, for any subset S1:T ⊆ G1:T and element
e ∈ G1:T \S1:T , we have the following derived set function:

fe(S1:T ) , f(S1:T ∪ {e})− f(S1:T )

= −trace(P1:T (S1:T ∪ {e})) + trace(P1:T (S1:T ))

= −trace({Ω1:T (S1:T ∪ {e})}−1)+trace({Ω1:T (S1:T )}−1)

= −trace ({Ω(S1:T ) + ∆e}−1) + trace({Ω(S1:T )}−1),

where the second equality follows from P1:T (S1:T ) ,
Ω1:T (S1:T )−1 (Definition 1) and in the last line we have
dropped the subscript 1:T for notational simplicity and have
used the additivity property of the information matrix from (4).
Further, ∆e = ∆1:T (Se1:T ) is as per (13), where only one
sensor e at some particular time-step (i.e., a pair (t, i) ∈
{1, . . . , T} × G) is added for the entire time horizon and
Se1:T ∈ R1×mT is a row vector with a ‘1’ in its ((t−1)m+ i)-
th entry and ‘0’ elsewhere. Since Se1:T is of rank 1 and ∆e

is computed from Se1:T and is diagonal by the monomial
assumption of C1:T in Assumption 1, ∆e , cec

>
e is a rank

one matrix with ce ∈ RnT×1.
Now, based on Theorem 1, proving submodularity of

f(S1:T ) is equivalent to proving that the marginal gain
fe(S1:T ) is monotonically non-increasing. To this end, we
proceed along the lines of the proof of Theorem 5 in [22]:
for two sensor sets S1:T ,S

′

1:T ⊆ G1:T such that S1:T ⊆
S ′1:T and a scalar γ ∈ [0, 1], define Ω(γ) , Ω(S1:T ) +

γ
(

∆(S ′1:T )−∆(S1:T )
)

and the following scalar function:

f̂e (γ) , −trace
(
{Ω(γ) + ∆e}−1

)
+ trace(Ω(γ)−1).

Now, in order to show that f̂e (γ) is monotonically non-
increasing, we rely on the fundamental theorem of calculus
and require that the following inequality holds: fe(S

′

1:T ) =

f̂e(1) = f̂e(0) +
∫ 1

0
d
dγ f̂e (γ) dγ ≤ f̂e(0) = fe(S1:T ), for

which a sufficient condition is that d
dγ f̂e (γ) ≤ 0. Performing

straightforward calculations similar to that done for Proposi-
tion 1 in [11], we obtain the following trace inequality for
supermodularity: d

dγ f̂e (γ) = trace
[
Ψe(γ) · F̄

]
≤ 0 where

Ψe(γ) , {Ω(γ) + ∆e}−2 − Ω(γ)−2 and F̄ , ∆(S ′1:T ) −
∆(S1:T ) � 0 since more information is gained by using
more sensors. By Corollary 1 of [11], a sufficient condition
to guarantee the above trace inequality is that Ψe(γ) � 0,
which is true iff ce (such that ∆e , cec

>
e ) is either zero

or is an eigenvector of Ω(γ). As these conditions are very
restrictive, Assumption 1 is imposed, which implies that F̄ is
a matrix of diagonal form comprising entirely of non-negative
elements on its diagonal, which can be verified from (13).
And it is straightforward to see that the above trace inequality
is satisfied if the diagonal entries of Ψe(γ) are non-positive.
Finally, adopting Theorem 4 of [11] for the batch case, the
trace inequality is satisfied if the prior information matrix Ω̄
defined in (4) is a strictly-diagonally-dominant M-matrix with
strictly ultrametric inverse. �

D. Proof of Theorem 3

Proof. [of performance guarantee] We will need the following
result on submodular maximization over matroids.

Lemma 1 (Theorem 2.1 of [6]). Given an independence
system (N,F) described as the intersection of P matroids, and
given h : 2N → R a normalized, monotone non-decreasing,
submodular set function; there exists a polynomial time greedy
algorithm that returns an approximate solution to:

max
S⊆N
{h(S) :S∈∩Pp=1Fp, (N,Fp) matroids ∀p=(1, . . . , P )},

(14)

that satisfies
h(S∗)− h(SG)

h(S∗)− h(∅)
≤ P

P + 1
, where S∗ is the

optimal solution to (14) and SG the greedy solution.

The following facilitates the performance guarantee proof.

Lemma 2. Problem 1 is a special case of the optimization
problem (14) with P = 1.

Proof. We need to appropriately re-define the independence
system (N,F) and the set function h(S) so that (14) becomes
equivalent to Problem 1. Given the set G1:T defined in Section
III-A along with the pair (N,F) defined in (8):
• For S ≡ S1:T ⊆ N ≡ G1:T , let h(S) = −g(S1:T ) with
g(S1:T ) defined in (5), which is a normalized, monotone
non-decreasing and submodular set function as proven in
Proposition 1 and Theorem 2, respectively.

• It is straightforward to verify that the pair (N,F) in (8)
is both an independence system and a matroid as per
Definition 7. Finally, this independence system can be
written using only one matroid, i.e., P = 1.

The above two points completes this proof. �

Proof. [of time complexity] We employ the Rauch-Tung-
Striebel (RTS) smoother algorithm [2, Section 6.1.1.2] in
order to compute the time complexity of Algorithm 1. The
RTS smoother comprises of the forward (Kalman Filter) and
backward passes, which are each run for T time-steps. In the
instance of having no sensor measurements at a given time-
step, the forward pass comprises solely of the prediction step
(with no update step). Now, at each time-step, for each pass of
the smoother, g(S1:t) defined in (5) needs to be computed and
its complexity is governed by generating the error covariance
matrix, which relies on computing the multiplication and
inverse of (n × n) matrices (based on the RTS smoother
equations) and so is an O(n2.37) operation when using the
optimized Coppersmith-Winograd algorithm.

Additionally, in order to find the minimum element that
minimizes the marginal gain, the marginal gain is computed
for all elements in the set N—defined in (8)—resulting in
an operational time complexity of O(mT ). This optimization
needs to be done only once and the minimizers can be ranked
and stored beforehand so that they can be used when executing
line 8 within each iteration of Algorithm 1. Thus, for the finite
time horizon problem, the complexity of the RTS smoother
is O(mn2.37T 2). Finally, the while loop is terminated once
all the elements in F have been exhaustively searched (i.e.,
the prescribed sensor budget has been met); thereby, result-
ing in the overall time complexity of Algorithm 1 to be
O
(
mn2.37T 2

∑T
t=1 rt

)
= O

(
mn2.37T 3 max

t={1,...,T}
rt
)
. �


