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Abstract— In this paper, we present a fixed-order set-valued
observer for linear discrete-time bounded-error systems that
simultaneously finds bounded sets of compatible states and
unknown inputs that are optimal in the minimum H∞-norm
sense, i.e., with minimum average power amplification. We also
analyze the necessary and sufficient conditions for the stability
of the observer and its connection to a system property known
as strong detectability. Next, we show that the proposed set-
valued observer can be used for attack-resilient estimation of
state and attack signals when cyber-physical systems are subject
to false data injection attacks on both actuator and sensor sig-
nals. Moreover, we discuss the implication of strong detectability
on resilient state estimation and attack identification. Finally,
the effectiveness of our set-valued observer is demonstrated in
simulation, including on an IEEE 14-bus electric power system.

I. INTRODUCTION

Cyber-physical systems (CPS) are systems in which com-
putational and communication elements collaborate to con-
trol physical entities. Such systems include the power grid,
autonomous vehicles, medical devices, etc. Most of these
systems are safety-critical and if compromised or malfunc-
tioning, can cause serious harm to the controlled physical
entities and the people operating or utilizing them. Recent
incidents of attacks on CPS, e.g., the Ukrainian power grid,
the Maroochy water service and an Iranian nuclear plant [1]–
[3] highlight a need for CPS security and for new designs
of resilient estimation and control.

In particular, false data injection attack is one of the
most serious forms of attacks on CPS, where malicious
and strategic attackers intrude and inject fake data signals
into the sensor measurements and actuator signals with the
goal of causing harm, energy theft etc. Given the strategic
nature of these false data injection signals, they are not well-
modeled by a zero-mean, Gaussian white noise nor by signals
with known bounds. Hence, traditional Kalman filtering and
unknown input observers do not apply. Nevertheless, reliable
estimates of states and unknown inputs are valuable and
needed for purposes of resilient control, attack identification,
etc. Similar state and input estimation problems can be found
across a wide range of disciplines, from the estimation of
mean areal precipitation [4] to fault detection and diagnosis
[5] to input estimation in physiological systems [6].

Literature review. Much of the research focus on simulta-
neous input and state estimation has been on obtaining point
estimates for deterministic systems with unknown inputs
via asymptotic and sliding mode observers (e.g., [7]–[9])
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or for stochastic systems with unknown inputs via unbi-
ased minimum-variance estimation (e.g., [10]–[14]). These
methods do not directly apply to bounded-error models,
i.e., uncertain dynamic systems with set-valued uncertainties,
where instead, the sets of states and unknown inputs that are
compatible/consistent with sensor observations are desired.
Similarly, while H2,H∞,L1 filters (e.g., [15]–[17]) can deal
with bounded modeling errors, only point estimates of states
are obtained in addition to the fact that it is unsuited to handle
large unknown inputs.

In contrast, set-membership or set-valued state observers
are capable of estimating the set of compatible states and
are preferable to stochastic estimation when hard accuracy
bounds are important [18], e.g., to guarantee safety. Since
its conception, it was apparent that characterizing the set of
states that are compatible with measurements is in general
computationally intensive. The complexity of optimal ob-
servers [19] grows with time, and also for methods based on
an `1 model matching problem [20] and polyhedral set com-
putation using Fourier-Motzkin elimination [21]. Thus, fixed-
order recursive filters were designed with equalized perfor-
mance (i.e., with invariant estimation errors) for superstable
systems in [18], [22]. However, all these set-membership
approaches can only compute the set of compatible states and
do not apply when the unknown input signals have unknown
bounds, as is often required in attack-resilient estimation
where the attack signals are malicious and strategic.

In the context of attack-resilient estimation against false
data injection attacks, numerous approaches were proposed
for deterministic systems (e.g., [23]–[26]), stochastic systems
(e.g., [27]–[29]) and bounded-error systems [30]–[32], but
they share the common theme of only obtaining point es-
timates. In particular, error bounds were computed in [30]
for only the initial state and in [31] with the assumption
of zero initial state and without optimality considerations.
More importantly, only sensor attacks are considered and set-
valued estimates of state and attack signals are not computed.

Contributions. The goal of this paper is to bridge the
gap between set-valued state estimation without unknown
inputs and point-valued state and unknown input estima-
tion. We propose a fixed-order set-valued observer for lin-
ear discrete-time bounded-error systems that simultaneously
finds bounded sets of states and unknown inputs that contain
the true state and unknown input, are compatible/consistent
with measurement outputs and are optimal in the minimum
H∞-norm sense, i.e., with minimum average power ampli-
fication. In addition, we provide the necessary and sufficient



conditions for observer stability and boundedness of the set-
valued estimates, which we show is closely related to a
system property known as strong detectability.

We further show that the proposed set-valued observer is
applicable for achieving attack-resiliency in cyber-physical
systems against false data injection attacks on both actuator
and sensor signals. Specifically, the set-valued observer can
compute the sets of states and attack signals that are com-
patible with measurements, where the latter enables not only
attack detection but also identification. Moreover, we discuss
the implication of strong detectability on resilient state esti-
mation and attack identification. Finally, the effectiveness of
our set-valued observer is demonstrated using a benchmark
system and an IEEE 14-bus electric power system.

Notation. Rn denotes the n-dimensional Euclidean space,
C the field of complex numbers and N nonnegative integers.
For a vector v ∈ Rn and a matrix M ∈ Rp×q , ‖v‖ ,

√
v>v

and ‖M‖ denote their (induced) 2-norm. Moreover, the
transpose, inverse, Moore-Penrose pseudoinverse and rank of
M are given by M>, M−1, M† and rk(M). For a symmetric
matrix S, S � 0 (S � 0) is positive (semi-) definite.

II. PROBLEM STATEMENT

System Assumptions. Consider the linear time-invariant
discrete-time bounded-error system

xk+1 = Axk +Buk +Gdk +Wwk,
yk = Cxk +Duk +Hdk + vk,

(1)

where xk ∈ Rn is the state vector at time k ∈ N, uk ∈ Rm is
a known input vector, dk ∈ Rp is an unknown input vector,
and yk ∈ Rl is the measurement vector. The process noise
wk ∈ Rn and the measurement noise vk ∈ Rl are assumed to
be bounded, with ‖wk‖ ≤ ηw and ‖vk‖ ≤ ηv (thus, they are
`∞ sequences). We also assume an estimate x̂0 of the initial
state x0 is available, where ‖x̂0 − x0‖ ≤ δx0 . The matrices
A, B, C, D, G, H and W are known and of appropriate
dimensions, where G and H are matrices that encode the
locations through which the unknown input or attack signal
can affect the system dynamics and measurements. Note that
no assumption is made on H to be either the zero matrix (no
direct feedthrough), or to have full column rank when there
is direct feedthrough. Without loss of generality, we assume
that rk[G> H>] = p, n ≥ l ≥ 1, l ≥ p ≥ 0 and m ≥ 0.
Unknown Input (or Attack) Signal Assumptions. The un-
known inputs dk are not constrained to be a signal of any
type (random or strategic) nor to follow any model, thus no
prior ‘useful’ knowledge of the dynamics of dk is available
(independent of {d`} ∀k 6= `, {w`} and {v`} ∀`). We also
do not assume that dk is bounded or has known bounds and
thus, dk is suitable for representing adversarial attack signals.

The simultaneous input and state set-valued observer de-
sign problem is twofold and can be stated as follows:

1) Given a linear discrete-time bounded-error system with
unknown inputs (1), design an optimal and stable filter
that simultaneously finds bounded sets of compatible
states and unknown inputs in the minimum H∞-norm
sense, i.e., with minimum average power amplification.

2) Develop an attack-resilient set-valued observer for sys-
tem (1) that computes a bounded set of state estimates
that contains the true state and identifies the set of
compatible attack signals irrespective of the magnitude
of false data injection attacks on its actuators and
sensors. In addition, recommend preventative attack
mitigation strategies based on detectability conditions.

III. PRELIMINARY MATERIAL

A. System Transformation

We first carry out a transformation of the system to
decouple the output equation into two components, one with
a full rank direct feedthrough matrix and the other without
direct feedthrough. Note, however, that this similarity trans-
formation is different from the one in [14], which is no longer
applicable as it was based on the noise error covariance.

Let pH , rk(H). Using singular value decomposition,
we rewrite the direct feedthrough matrix H as H =[
U1 U2

] [Σ 0
0 0

] [
V >1
V >2

]
, where Σ ∈ RpH×pH is a diagonal

matrix of full rank, U1 ∈ Rl×pH , U2 ∈ Rl×(l−pH), V1 ∈
Rp×pH and V2 ∈ Rp×(p−pH), while U ,

[
U1 U2

]
and

V ,
[
V1 V2

]
are unitary matrices. When there is no direct

feedthrough, Σ, U1 and V1 are empty matricesa, and U2 and
V2 are arbitrary unitary matrices.

Then, we define two orthogonal components of the un-
known input given by

d1,k = V >1 dk, d2,k = V >2 dk. (2)

Since V is unitary, dk = V1d1,k +V2d2,k and the system (1)
can be rewritten as

xk+1 = Axk +Buk +GV1d1,k +GV2d2,k +Wwk

= Axk +Buk +G1d1,k +G2d2,k +Wwk, (3)
yk = Cxk +Duk +HV1d1,k +HV2d2,k + vk

= Cxk +Duk +H1d1,k + vk, (4)

where G1 , GV1, G2 , GV2 and H1 , HV1 = U1Σ.
Next, we decouple the output yk using a nonsingular trans-
formation T =

[
T>1 T>2

]>
, U> =

[
U1 U2

]>
to obtain

z1,k ∈ RpH and z2,k ∈ Rl−pH given by

z1,k , T1yk = U>1 yk = C1xk +D1uk + Σd1,k + v1,k
z2,k , T2yk = U>2 yk = C2xk +D2uk + v2,k

(5)

where C1 , U>1 C, C2 , U>2 C, D1 , U>1 D, D2 , U>2 D,
v1,k , U>1 vk and v2,k , U>2 vk. This transform is also
chosen such that ‖

[
v>1,k v>2,k

]> ‖ = ‖U>vk‖ = ‖vk‖.

B. Input and State Detectability (a.k.a. Strong Detectability)

Similar to the stability of the deterministic and stochastic
input and state observers/filters, we will show in Section
IV-B that the stability of the set-valued observer is directly
related to the notion of strong detectability. Without loss of
generality, we assume that B = 0 and D = 0 in this section,
since uk is known.

a We adopt the convention that the inverse of an empty matrix is also an
empty matrix and assume that operations with empty matrices are possible.



Definition 1 (Strong detectability). The linear system (1) is
strongly detectable if

yk = 0 ∀ k ≥ 0 implies xk → 0 as k →∞
for all initial states and input sequences {di}i∈N.

Definition 2 (Invariant Zeros). The invariant zeros z of

the Rosenbrock system matrix RS(z) :=

[
zI −A −G
C H

]
of

system (1) are the finite values of z for which RS(z) drops
rank, i.e., rk(RS(z)) < nrank(RS), where nrank(RS) is
the normal rank (maximum rank over z ∈ C) of RS(z).

Theorem 1 (Strong detectability). A linear time-invariant
discrete-time system is strongly detectable if and only if
either of the following holds for all z ∈ C, |z| ≥ 1:

(i) rkRS(z), rk

[
zI −A −G
C H

]
=n+ p,

(ii) rk R̂S(z), rk

[
zI − Â −G2

C2 0

]
= n+ p− pH ,

(iii) rkRS(z), rk

[
zI −A −G2

C2 0

]
= n+ p− pH ,

(iv) rkR?

S(z), rk

[
zI −A −G2

C2A C2G2

]
= n+ p− pH ,

where Â , A−G1Σ−1C1 and A , (I−G2M̃2C2)Â for any
M̃2 ∈ R(p−pH)×(p−pH). The above conditions are equivalent
to the system being minimum-phase (i.e., the invariant zeros
of RS(z) in Condition (i) are stable).

Moreover, strong detectability implies that the pairs
(A,C), (Â, C2), (A,C2) and (A,C2A) are detectable; and if
l = p, then strong detectability implies that the pairs (A,G),
(Â, G2) and (A,G2) are stabilizable.

Proof. The equivalence of Conditions (i) and (ii) with strong
detectability in Definition 1 can be found in [14]. Thus, it
is sufficient to show the equivalence of Conditions (ii), (iii)
and (iv) using the following identity for all z ∈ C, z 6= 0:

rk

[
zI − Â −G2

C2 0

]
= rk

[
zI − Â −G2

C2 0

][
I 0

−M̃2C2Â I

]
= rk

[
zI −A −G2

C2 0

]
= rk

[
I 0
−C2 zI

] [
zI −A −G2

C2 0

]
= rk

[
zI −A −G2

C2A C2G2

]
.

Finally, comparing Conditions (i)–(iv) to the PBH rank test
for detectability (and stabilizability), we see that strong
detectability implies that (A,C), (Â, C2), (A,C2) and
(A,C2A) are detectable (and that (A,G), (Â, G2), (A,G2)
are stabilizable if l = p). �

IV. FIXED-ORDER SIMULTANEOUS INPUT AND STATE
SET-VALUED OBSERVERS

A. Set-Valued Observer Design

We consider a recursive three-step set-valued observer
design (similar to [12], [14]), composed of an unknown input
estimation step that uses the current measurement and the
set of compatible states to estimate the set of compatible
unknown inputs, a time update step that propagates the

compatible set of states based on the system dynamics, and a
measurement update step that updates the set of compatible
states using the current measurement. In brief, our goal is to
design a recursive three-step set-valued observer of the form:

Unknown Input Estimation: D̂k−1 = Fd(X̂k−1, uk),

Time Update: X̂?
k = F?

x(X̂k−1, D̂k−1, uk),

Measurement Update: X̂k = Fx(X̂?
k , uk, yk),

where Fd, F?
x and Fx are the to-be-designed set mappings

while D̂k−1, X̂?
k and X̂k are the sets of compatible unknown

inputs at time k−1, propagated and updated states at time k,
respectively. Note that we have a (one-step) delayed estimate
of D̂k−1 because it is the only estimate we can obtain in
light of (5) since d2,k−1 does not affect z1,k and z2,k, and
hence, cannot be estimated from yk. The reader is referred
to a previous work [13] for a detailed discussion on when a
delay is absent or when further delays are expected.

Since the complexity of optimal observers grows with time
[19]–[21], we will only consider fixed-order recursive filters
as in [18], [22], where set-valued estimates are of the form:

D̂k−1 = {d ∈ Rp : ‖dk−1 − d̂k−1‖ ≤ δdk−1}, (6)

X̂?
k = {x ∈ Rn : ‖xk − x̂?k|k‖ ≤ δ

x,?
k }, (7)

X̂k = {x ∈ Rn : ‖xk − x̂k|k‖ ≤ δxk}, (8)

i.e., we confine the estimation errors to balls of norm δ. In
this case, the observer design problem is reduced to finding
the centroids d̂k−1, x̂?k|k and x̂k|k as well as the radii δdk−1,
δx,?k and δxk of the sets D̂k−1, X̂?

k and X̂k, respectively.
We further limit our attention to observers for the centroids

d̂k−1, x̂?k|k and x̂k|k that belong to the class of three-step
recursive filters given in [12], [14], defined as follows for
each time k (with x̂0|0 = x̂0):
Unknown Input Estimation:

d̂1,k = M1(z1,k − C1x̂k|k −D1uk), (9)

d̂2,k−1 = M2(z2,k − C2x̂k|k−1 −D2uk), (10)

d̂k−1 = V1d̂1,k−1 + V2d̂2,k−1, (11)

Time Update:
x̂k|k−1 = Ax̂k−1|k−1 +Buk−1 +G1d̂1,k−1, (12)

x̂?k|k = x̂k|k−1 +G2d̂2,k−1, (13)

Measurement Update:
x̂k|k = x̂?k|k + L(yk − Cx̂?k|k −Duk)

= x̂?k|k + L̃(z2,k − C2x̂
?
k|k −D2uk), (14)

where L ∈ Rn×l, L̃ , LU2 ∈ Rn×(l−pH), M1 ∈ RpH×pH

and M2 ∈ R(p−pH)×(l−pH) are observer gain matrices that
are chosen in the following lemma and theorem to minimize
the “volume” of the set of compatible states and unknown
inputs, quantified by the radii δdk−1, δx,?k and δxk . Their proofs
will be provided in the appendix. Note also that we applied
L = LU2U

>
2 = L̃U>2 from the following lemma into (14).

Lemma 1 (Necessary Conditions for Boundedness of Set–
Valued Estimates). The input and state estimation errors,
d̃k−1 , dk−1− d̂k−1 and x̃k|k , xk− x̂k|k, are bounded for



all k (i.e., the set-valued estimates are bounded with radii
δdk−1, δ

x,?
k , δxk < ∞), only if M1Σ = I , M2C2G2 = I and

LU1 = 0. Consequently, rk(C2G2) = p − pH , M1 = Σ−1,
M2 = (C2G2)† and L = LU2U

>
2 = L̃U>2 .

Theorem 2. Suppose Lemma 1 holds, and let Tx̃,w,v denote
the transfer function matrix that maps the noise signals ~wk ,[
w>k v>k

]>
to the updated state estimation error x̃k|k ,

xk − x̂k|k. Moreover, assume that the following hold:
(A.1) (A∞, C∞) is detectable,
(A.2) D∞D>∞ � 0 and

(A.3) rk

[
A∞ − ejωI B∞

C∞ D∞

]
= n+ l − pH , ∀ω ∈ [0, 2π],

with Â , A−G1M1C1, Φ , I−G2M2C2, A , ΦÂ, A∞ ,
A, B∞ ,

[
ΦW −ΦG1M1 −

√
2G2M2 0

]
, C∞ , C2A

and D∞ ,
[
C2ΦW −C2ΦG1M1 −

√
2C2G2M2

√
2I
]
.

Then, there exists an H∞-observer that satisfy ‖Tx̃,w,v‖∞ ≤
γ, i.e., the maximum average signal power amplification is
upper-bounded by γ2:

limk→∞
1

k+1

∑k
i=0 x̃

>
i|ix̃i|i

limk→∞
1

k+1

∑k
i=0 ~w

>
i ~wi

= ‖Tx̃,w,v‖2∞ ≤ γ2, (15)

if and only if there exists P = P> � 0 that satisfies the
following discrete-time algebraic Riccati equation (DARE)b:

P = −(A∞P + C>l +B∞)(ClPC
>
l +Rl)

−1

(A∞P + C>l +B∞)> +B∞B
>
∞ +A∞PA

>
∞,

(16)

with Cl ,

[
C∞
γ−1I

]
, Dl ,

[
D∞

0

]
and Rl ,

[
D∞D

>
∞ 0

0 −I

]
such that U∞ , I−γ−2P � 0 and Ă , A∞−(A∞PC

>
∞+

B∞D
>
l )(ClPC

>
l + Rl)

−1Cl is asymptotically stable, i.e.,
|λi(Ă)| < 1 for all eigenvalues λi(Ă) of Ă. When such a P
matrix exists, the filter gain L̃ is given by

L̃=(B∞D
>
∞+A∞V∞C

>
∞)(C∞V∞C

>
∞+D∞D

>
∞)−1 (17)

with V∞ = P + γ−2PU−1∞ P . Moreover, Ae , (I − L̃C2)A
and A?

e , A(I − L̃C2) are asymptotically stable.

Thus, we can search over γ (e.g., via bisection) to find
the smallest γ and the corresponding optimal observer gain
L̃ in the minimum H∞-norm sense. Further, by upper-
bounding the estimation errors, we find the radii of the sets of
compatible inputs and states to be (cf. proof in the appendix):

δdk−1 = δx0‖VeAk−1
e ‖+ ηw(‖V2M2C2‖

+

k−2∑
i=0

‖VeAi
eBe,w‖) + ηv(

k−3∑
i=0

‖VeAi
e(Be,v1 +AeBe,v2)‖

+‖V2M2T2‖+ ‖VeBe,v2 + (V1 − V2M2C2G1)M1T1‖
+‖VeAk−2

e Be,v1‖), (18)

δx,?k = δx0‖AAk−1
e ‖+ ηw(

k−2∑
i=0

‖AAi
eBe,w‖+ ‖B?

e,w‖)

+ηv(

k−3∑
i=0

‖AAi
e(Be,v1 +AeBe,v2)‖+ ‖B?

e,v2‖

+‖AAk−2
e Be,v1‖+ ‖B?

e,v1 +ABe,v2‖), (19)

b The DARE equation in (16) can be solved with control system software.
For example, in MATLAB’s Control System Toolbox, we can use the com-
mand DARE(A>∞, C>l ,Φ(I + G1M1M>1 G>1 )Φ>, (C>2 C2 − 1

γ2
I)−1).

δxk = δx0‖Ak
e‖+ ηv(‖Be,v2‖+ ‖Ak−1

e Be,v1‖

+

k−2∑
i=0

‖Ai
e(Be,v1 +AeBe,v2)‖) + ηw

k−1∑
i=0

‖Ai
eBe,w‖,

(20)

where Â , A − G1M1C1, Φ , I − G2M2C2, A ,
ΦÂ, Ve , V1M1C1 + V2M2C2Â, Ae , (I − L̃C2)A,
B?

e,w , ΦW , B?
e,v1 , −ΦG1M1T1, B?

e,v2 , −G2M2T2,
Be,w , (I − L̃C2)B?

e,w, Be,v1 , (I − L̃C2)B?
e,v1 and

Be,v2 , (I − L̃C2)B?
e,v2 − L̃T2. Moreover, since Ae is

stable as a consequence of Theorem 2 (hence, limk→∞Ak
e =

0), it is straightforward to see that the radii converge to
finite steady-state values given by limk→∞ δdk−1 = δd,
limk→∞ δx,?k = δx,? and limk→∞ δxk = δx, where

δd , ηw(‖V2M2C2‖+ lim
k→∞

∑k−2
i=0 ‖VeAi

eBe,w‖)

+ηv( lim
k→∞

∑k−3
i=0 ‖VeAi

e(Be,v1 +AeBe,v2)‖+ ‖V2M2T2‖
+‖VeBe,v2 + (V1 − V2M2C2G1)M1T1‖) <∞,

δx,? , ηw( lim
k→∞

∑k−2
i=0 ‖AAi

eBe,w‖+ ‖B?
e,w‖)

+ηv( lim
k→∞

∑k−3
i=0 ‖AAi

e(Be,v1 +AeBe,v2)‖+ ‖B?
e,v2‖

+‖AAk−2
e Be,v1‖+ ‖B?

e,v1 +ABe,v2‖) <∞,
δx , ηw lim

k→∞

∑k−1
i=0 ‖Ai

eBe,w‖+ ηv(‖Be,v2‖

+ lim
k→∞

∑k−2
i=0 ‖Ai

e(Be,v1 +AeBe,v2)‖) <∞.

Algorithm 1 summarizes the three steps of the fixed-order
input and state set-valued observer, in which d2,k−1 is esti-
mated before the time update, followed by the measurement
update and finally, the estimation of d1,k. Note that we did
not include δx,? and X̂?

k in the algorithm for conciseness.

B. Observer Stability and Strong Detectability

Next, we provide the relationship between observer sta-
bility and strong detectability (cf. Definition 1), whose proof
will be provided in the appendix. Note that rk(C2G2) =
p− pH is a necessary condition for the boundedness of the
set-valued estimates by Lemma 1 and this is assumed in the
following results. It is also noteworthy that C2G2 is the first
invertibility matrix in [13] (similar to a Markov parameter).

Lemma 2. All non-zero invariant zeros of the system (1) are
eigenvalues/poles of the state matrices A?

e , A(I − L̃C2)
and Ae , (I − L̃C2)A of the propagated and updated state
estimation error dynamics x̃?k|k and x̃k|k, respectively, for
any observer gain L̃, where A , ΦÂ and Φ , I−G2M2C2.

Theorem 3 (Strong Detectability ⇔ Observer Stability).
Suppose Lemma 1 holds. Then, strong detectability is nec-
essary and sufficient for asymptotic stability of the observer
dynamics with A?

e and Ae, and for the boundedness of the
set-valued input and state estimates for any non-zero δx0 .

Theorem 4 (Strong Detectability and Existence of an
H∞-Observer). Suppose Lemma 1 holds. Then, strong de-
tectability guarantees that the Assumptions (A.1) and (A.2)
in Theorem 2 hold. If p = l, then strong detectability
also satisfies Assumption (A.3). Otherwise, that (A,G2) or
(A∞, B∞) is stabilizable on the unit circle also satisfies



Algorithm 1 Fixed-Order Input & State Set-Valued Observer

1: Initialize: M1 = Σ−1; M2 = (C2G2)†; Â = A−G1M1C1;
Φ = I −G2M2C2; A = ΦÂ;
Ve = V1M1C1 + V2M2C2Â;
Compute L̃ via Theorem 2 and perform bisection to
minimize γ.
Ae = (I − L̃C2)A; Be,w = (I − L̃C2)ΦW ;
Be,v1 = −(I − L̃C2)ΦG1M1T1;
Be,v2 = −((I − L̃C2)G2M2 + L̃)T2;
x̂0|0 = x̂0 = centroid(X̂0);
δx0 = min

δ
{‖x− x̂0|0‖ ≤ δ,∀x ∈ X̂0};

d̂1,0 = M1(z1,0 − C1x̂0|0 −D1u0);
2: for k = 1 to N do
. Estimation of d2,k−1 and dk−1

3: x̂k|k−1 = Ax̂k−1|k−1 +Buk−1 +G1d̂1,k−1;
4: d̂2,k−1 = M2(z2,k − C2x̂k|k−1 −D2uk);
5: d̂k−1 = V1d̂1,k−1 + V2d̂2,k−1;
6: δdk−1 = δx0‖VeAk−1

e ‖+ ηw(
∑k−2
i=0 ‖VeA

k−2−i
e Be,w‖

+‖V2M2C2‖) + ηv(‖V2M2T2‖+ ‖VeAk−2
e Be,v1‖

+‖VeBe,v2 + (V1 − V2M2C2G1)M1T1‖
+
∑k−2
i=1 ‖VeA

k−2−i
e (Be,v1 +AeBe,v2)‖);

7: D̂k−1 = {d ∈ Rl : ‖d− d̂k−1‖ ≤ δdk−1};
. Time update

8: x̂?k|k = x̂k|k−1 +G2d̂2,k−1;
. Measurement update

9: x̂k|k = x̂?k|k + L̃(z2,k − C2x̂
?
k|k −D2uk);

10: δxk = δx0‖Ake‖+ ηw
∑k−1
i=0 ‖A

i
eBe,w‖+ ηv(‖Be,v2‖

+‖Ak−1
e Be,v1‖+

∑k−2
i=0 ‖A

i
e(Be,v1 +AeBe,v2)‖);

11: X̂k = {x ∈ Rn : ‖x− x̂k|k‖ ≤ δxk};
. Estimation of d1,k

12: d̂1,k = M1(z1,k − C1x̂k|k −D1uk);
13: end for

Assumption (A.3) in Theorem 2. Then, an H∞-observer with
cost γ exist if U∞ � 0 and Ă is asymptotically stable (with
U∞ and Ă as defined in Theorem 2).

V. APPLICATION TO ATTACK-RESILIENT ESTIMATION

In this section, we show that the proposed set-valued
observer can be applied for attack-resilient estimation of
state and attack signals when a system is subject to false
data injection attacks on both the actuator and sensor signals.
Note that we are not considering sparse false data injection
attacks, which is a subject of ongoing research. But rather,
we assume that the attack locations are known (i.e., the G
and H matrices that encode the attack locations are given)
while the attack magnitudes dk at any time k are unknown.

As previously discussed, the false data injection attack
magnitudes dk on the actuator and sensor signals are adver-
sarial and strategic. Hence, we ought not make any assump-
tions on the attack model (random or deterministic) because
a strategic adversary could otherwise simply select a different
attack model than is assumed. This ‘non-assumption’ aligns
perfectly with the unknown input signal model in Section II.

Therefore, for any linear time-invariant bounded-error
models of a cyber-physical system, the system description
in (1) can capture false data injection attacks on the actuator
and sensor signals on the system without any limitations.
Moreover, the fixed-order simultaneous input and state set-
valued observer proposed in Section IV is capable not only

of reliably estimating the set of all compatible states, X̂k,
but also of identifying the attack signals via the estimation
of the set of all compatible unknown inputs, D̂k−1.

A. Implications on Attack-Resilient Estimation
Having established that the proposed set-valued observer is

applicable to attack-resilient estimation, we now discuss the
implication of the relationship between observer stability and
strong detectability on resilient state estimation and attack
identification. First, we introduce the following definitions:

Definition 3 (Resilient Set of Compatible States). We say
that the estimated set of compatible states is resilient, if for
any initial state x0 ∈ Rn and signal attack sequence {dj}j∈N
in Rp, the true state xk is contained in the set estimates X̂?

k

and X̂k, and these sets remain bounded for all k.

Definition 4 (Data Injection Attack Identification). A false
data injection attack is identified, if for any initial state x0 ∈
Rn and signal attack sequence {dj}j∈N in Rp, the true attack
signal dk−1 is contained in the set estimate D̂k−1 and this
set remains bounded for all k.

Definition 5 (Correctable false data injection attacksc). We
say that false data injection attacks on p actuators and
sensors are correctable, if for any initial state x0 ∈ Rn and
signal attack sequence {dj}j∈N in Rp, we have a set-valued
observer to compute the resilient set of compatible states and
to identify the false data injection attack signals.

Based on these definitions as well as the observer design
in Section IV, we have the following conclusions:

Proposition 1 (Resilient Set-Valued State Estimation). A
resilient set of compatible sets can be obtained if and only
if the system (1) is strongly detectable and Lemma 1 holds.

Proposition 2 (Attack Identification). A false data injection
attack is identified if and only if the system (1) is strongly
detectable and Lemma 1 holds.

Note that strong detectability is a system property that
is independent of the observer design. Hence, the necessity
of strong detectability can serve as a guide to determine
and recommend which actuators or sensors need to be safe-
guarded to guarantee resilient estimation as a preventative
attack mitigation method (cf. Section VI-B for an example).

Moreover, we can derive an upper bound on the maximum
number of false data injection attacks that can be asymptot-
ically corrected based on strong detectability.

Theorem 5. The maximum number of correctable actuators
and sensors signal attacks, p∗, for system (1) is equal to the
number of sensors, l, i.e., p∗≤ l (upper bound is achievable)d.

Proof. The theorem follows immediately as an implication
of Theorem 3 and [27, Theorem 1], [28, Theorem 4.3]. �

cThis definition is distinct from [25, Definition 1] that is defined for exact
finite-time point estimation (after n steps) and requires strong observability
[25]. Instead, it is related to boundedness in infinite time, similar to infinite-
time point estimation that only requires strong detectability [27], [28].

dBy contrast, the stronger requirement of strong observability in [25]
(implies strong detectability [14]) leads to a maximum of p∗ ≤ d l

2
− 1e.



VI. SIMULATION EXAMPLES

A. Benchmark System

In this example, we consider a system that has been used
as a benchmark for many state and input filters (e.g., [14]):

A =


0.5 2 0 0 0
0 0.2 1 0 1
0 0 0.3 0 1
0 0 0 0.7 1
0 0 0 0 0.1

;G =


1 0 −0.3
1 0 0
0 0 0
0 0 0
0 0 0

;H =


0 0 1
0 0 0
0 1 0
0 0 0
0 0 0

;

B = 05×1;C = I5;D = 05×1.

The unknown inputs used in this example are as given in Fig.
1, while the initial state estimate and noise signals (drawn
uniformly) have bounds δx = 0.5, ηw = 0.02 and ηv =
10−4. The invariant zeros of the system matrix RS(z) are
{0.3, 0.8}. Thus, this system is strongly detectable.

We observe from Fig. 1 that the proposed algorithm is able
to find set-valued estimates of the states and unknown inputs.
The actual estimation errors are also within the predicted
upper bounds (cf. Fig. 2), which converges to a steady-state
as established in Section IV-A. Moreover, with the gain L̃ of
the H∞ observer, the eigenvalues of A?

e = A(I − L̃C2) and
Ae = (I − L̃C2)A are {0, 0.107, 0.3, 0.407, 0.8}. Hence, as
is predicted in Lemma 2, all invariant zeros of the system
are eigenvalues of the set-valued observer.

Fig. 1: Actual states x1, x2, x3, x4, x5 and their estimates,
as well as unknown inputs d1, d2 and d3 and their estimates.

Fig. 2: Actual estimation errors and radii of set-valued
estimates of states,‖x̃k|k‖, δxk , and unknown inputs,‖d̃k‖, δdk .

B. Attack-Resilient Estimation
We now demonstrate the effectiveness of our attack-

resilient H∞ observer using an IEEE 14-bus system [33]
that is subject to data injection attacks. The system consists
of 5 synchronous generators and 14 buses, with secure
phasor measurement units (PMUs) being installed on the
buses depicted in Fig. 3. It is represented by n = 10
states comprising the rotor angles and frequencies of each

Fig. 3: IEEE 14-bus electric power system [33].

Fig. 4: Resilient estimation errors and radii of set-valued
estimates of states, ‖x̃k|k‖, δxk , and attack signals, ‖d̃k‖, δdk .

generator. The dynamics of the system can be represented
by an uncertain LTI model [23], [25] that is discretized with
a sampling interval of dT = 0.05s to obtain the model in (1),
where p = 35 sensors are deployed to measure the real power
injections at every bus, the real power flows along every
branch and the rotor angle of generator 1. The initial state
estimate and noise signals (drawn uniformly) have bounds
δx = 1, ηw = 0.03 and ηv = 0.03.

In this example, we assume that all unsecured PMU mea-
surements are attacked (sensor attacks with known locations).
Nevertheless, we observe from Fig. 4 that the proposed
algorithm is able to find set-valued state estimates that
contain the true state, as well as to identify a bounded set that
contains the actual attack signals. Individual state and attack
signals as in Fig. 1 can also be estimated but are omitted
for brevity. Moreover, performing strong detectability tests
(necessary condition by Propositions 1 and 2) for various
attack locations, i.e., G and H , we found that false data
injection attacks on the sensors are correctable if at least
one sensor from among sensors 10, 14 and 15 is protected.

VII. CONCLUSION

We presented an optimal fixed-order set-valued observer
that simultaneously computes the set of compatible states
and unknown inputs for linear discrete-time bounded-error
systems in the minimum H∞-norm sense. Necessary and
sufficient conditions for the stability of the observer and its
connection to strong detectability were also derived. Then,
we showed that the proposed set-valued observer is applica-
ble for attack-resilient estimation of state and attack signals
when cyber-physical systems are subject to malicious false
data injection attacks on both actuator and sensor signals, as
well as discussed the implication of strong detectability on
resilient state estimation and attack identification.
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APPENDIX: PROOFS

A. Proof of Lemma 1

We observe from (5), (9) and (10) that

d̂1,k = M1(C1x̃k|k + Σd1,k + v1,k), (21)

d̂2,k−1 = M2(C2(Ak−1x̃k−1|k−1 +G1d̃1,k−1 + wk−1)

+ v2,k + C2G2d2,k−1). (22)

Then, from (12) and (13), as well as (4) and (14), the
propagated and updated state estimate errors are found as

x̃?k|k = Ax̃k−1|k−1 +G1d̃1,k−1 +G2d̃2,k−1 + wk−1, (23)

x̃k|k = (I − LC)x̃?k|k − LU1Σd1,k − Lvk. (24)

We show by induction that the estimates d̂k, x̂k|k and x̂?k|k
are bounded, assuming at the moment that their dynamics
are stable (which we will show to hold in Theorem 3).
For the base case, since x̂0|0, x̂?0|0 and the noise signals
are bounded by assumption, from (21) and (22), we find
that d̂1,0 and d̂2,0 are bounded, only if M1Σ = I and
M2C2G2 = I , since we assumed that d1,0 and d2,0 can
be unbounded. Hence, d̂0 is bounded. In the inductive step,
we assume that x̃k−1|k−1 and x̃?k−1|k−1 are bounded. Then,
the input estimates d̃1,k−1 and d̃2,k−1 are bounded, only if
M1Σ = I and M2C2G2 = I , since the unknown inputs d1,k
and d2,k−1 can be unbounded although the noise signals are
bounded. Similarly, from (24) with a bounded measurement
noise, we need the constraint LU1 = 0 such that x̃k|k
remains bounded. Thus, by induction, x̃?k|k and x̃k|k are
bounded for all k. Since we require M2C2G2 = I for
the existence of bounded input estimates, it follows that
rk(C2G2) = p− pH is a necessary condition. Furthermore,
L = LUU> = LU2U

>
2 = L̃U>2 since LU1 = 0. �

B. Proof of Theorem 2

First, we reduce the system with unknown inputs to one
without unknown inputs. From (14) and (5), we have x̃k|k =

x̃?k|k− L̃(C2x̃
?
k|k + v2,k). Then, substituting (21) with M1 =

Σ−1 into (23) and the above, and rearranging, we obtain

x̃k|k = Ax̃k−1|k−1 + wk−1 − L̃k(C2Ax̃k−1|k−1

+ C2wk−1 + v2,k), (25)

with the state matrix A , (I − G2M2C2)Â and noise
signal wk−1 , −(I − G2M2C2)(G1M1v1,k−1 − wk−1) −



G2M2v2,k. As it turns out, the updated state estimate error
dynamics above is the same for an a posteriori H∞ filter
[15, Eq. (5.2)] for a linear system without unknown inputs

xe,?k+1 = Axe,?k + wk, ye,?k = C2x
e,?
k + v2,k.

Since the objective for both systems is the same, i.e., to ob-
tain the observer gain L̃ with an a posteriori H∞ filter, they
are equivalent systems from the perspective of estimation.
Furthermore, from the analysis in [15, Eq. (5.3)], it can be
seen that an equivalent observer gain L̃ can be obtained with
the a priori H∞ filter for the following system

xek+1 = A∞x
e
k +B∞w

e
k, yek = C∞x

e
k +D∞w

e
k,

with A∞ , A, B∞ ,
[
ΦW −ΦG1M1 −

√
2G2M2 0

]
,

C∞ , C2A, D∞ ,
[
0 0 0

√
2I
]

+ C2B∞ and

we
k ,

[
w>k v>1,k

1√
2
v>2,k+1

1√
2
v>2,k

]>
, where the fac-

tors 1√
2

are included such that limk→∞
∑k

i=0 ‖we
i ‖ =

limk→∞
∑k

i=0 ‖
[
w>i v>i

]> ‖. The design of the observer
gain L̃ is then a direct application of the a priori H∞ filter
(e.g., [34, Theorem 2.2]). Next, we consider the following
identity ∀ω ∈ [0, 2π] (equivalently, ∀z ∈ C, |z| = 1)

rk

[
A∞ − ejωI B∞

C∞ D∞

]
= rk

[
A∞ − zI B∞
C∞ D∞

]
= rk

[
A− zI ΦW −ΦG1M1 −

√
2G2M2 0

C2A 0 0 0
√

2I

]
= rk

[
A− zI ΦW −ΦG1M1 −

√
2G2M2 0

0 0 0 0
√

2I

]
= rk

[
A− zI ΦW −ΦG1M1 −

√
2G2M2

]
+ l − pH ,

(26)

where the third equality is obtained by subtracting C2 times
the first row from the second row, and then subtracting√

2
z times the first column to the final column. Hence,

Assumption (A.3) implies that (A∞, B∞) is stabilizable on
the unit circle, which along with the Assumption (A.1) are
are necessary and sufficient conditions for the stability of Ae

[35] and by extension, A?
e , since Ae and A?

e have the same
eigenvalues [36, Theorem 1.3.22]. �

C. Proof of Error Bounds/Set Radii (18), (19) and (20)

From (21)–(24), we find the state estimation errors as

x̃?k|k =Ax̃k−1|k−1+B?
e,wwk−1+B?

e,v1vk−1+B?
e,v2vk,

x̃k|k =(I − L̃C2)x̃?k|k − L̃v2,k,
(27)

where Â , A − G1M1C1, Φ , I − G2M2C2, A ,
ΦÂ, B?

e,w , ΦW , B?
e,v1 , −ΦG1M1T1 and B?

e,v2 ,
−G2M2T2. Then, via substitution, we obtain the estimation
errors in terms of the initial state error x̃0|0 and noise signals:

x̃k|k = Ak
e x̃0|0 +Ak−1

e

[
Be,w Be,v1

]
~w0 +Be,v2vk

+
∑k−1

i=1 A
k−1−i
e

[
Be,w Be,v1 +AeBe,v2

]
~wi,

x̃?k|k = AAk−1
e x̃0|0 +AAk−2

e

[
Be,w Be,v1

]
~w0

+B?
e,wwk−1 + (B?

e,v1 +ABe,v2)vk−1 +B?
e,v2vk

+
∑k−2

i=1 AA
k−1−i
e

[
Be,w Be,v1 +AeBe,v2

]
~wi,

with ~wi =
[
w>i v>i

]>
, Ae , (I − L̃C2)A, Be,w , (I −

L̃C2)B?
e,w, Be,v1 , (I − L̃C2)B?

e,v1 and Be,v2 , (I −

L̃C2)B?
e,v2 − L̃T2. Moreover, we find the unknown input

estimation error as
d̃k−1 = V1d̃1,k−1 + V2d̃2,k−1

= −VeAk−1
e x̃0 − VeAk−2

e

[
Be,w Be,v1

]
~w0

−V2M2C2wk−1 − V2M2T2vk
+(VeBe,v1 + (V1 − V2M2C2G1)M1T1)vk−1
+
∑k−2

i=1 VeA
k−1−i
e

[
Be,w Be,v1 +AeBe,v2

]
~wi,

with Ve , V1M1C1 + V2M2C2Â. Finally, the error bounds
(18), (19), (20) can be found using triangle inequalities. �

D. Proof of Lemma 2
Let z be any invariant zero of system (1), i.e., whenRS(z)

drops rank (cf. Theorem 1). Then, there exists
[
ν> µ>

]> 6=
0 such that

(zI −A)ν −G2µ = 0, C2ν = 0.

Premultiplying the former with (I−G2M2C2) and applying
the latter as well as the fact that M2C2G2 = I , we have

(I−G2M2C2)(zI −Â)ν+(I−G2M2C2)G2µ = 0

=(zI−A)ν =(zI−A)ν+AL̃C2ν = (zI−A(I − L̃C2))ν.

If ν = 0, then G2µ = 0 and, in turn, µ = 0, which is a
contradiction. Hence, ν 6= 0 and the determinant of zI −
(A − AL̃C2) is zero, i.e., any invariant zero of RS(z) is
also an eigenvalue of the propagated state estimation error
dynamics of x̃?k|k, which can be found from (27) to be

x̃?k|k = A(I − L̃C2)x̃?k−1|k−1 +B?
e,wwk−1

+(B?
e,v1 −AL̃T2)vk−1 +B?

e,v2vk,
(28)

and by extension, the state matrix Ae in (25), since Ae and
A?

e have the same eigenvalues [36, Theorem 1.3.22]. �

E. Proof of Theorem 3
Let Lemma 1 hold. We will prove that strong detectability

implies that state estimation errors with A?
e = A(I − L̃C2)

and Ae = (I − L̃C2)A (they have same eigenvalues [36])
are asymptotically stable and bounded, and vice versa.
(⇒): By Theorem 1, strong detectability implies that
(A,C2A) is detectable. Hence, there exists L̃ such that Ae,
and by extension A?

e , are asymptotically stable, which in turn
implies bounded-input, bounded-state stability of (25), (28).
(⇐): We will show this by contraposition. By Lemma 2,
we know that (1) being not strongly detectable implies that
A?

e , and by extension Ae, are unstable. This implies that
limk→∞ ‖Ak

e‖ = limk→∞ ‖(A?
e)k‖ = ∞. Thus, from (19)

and (20), the estimation errors are unbounded for any δx0 6= 0.

F. Proof of Theorem 4
By Theorem 1, strong detectability implies that Assump-

tion (A.1) holds. Moreover, D∞D>∞ = C2(G2M2M
>
2 G
>
2 +

Φ(WW>+G1M1M
>
1 G
>
1 )Φ>)C>2 +2I � 0 readily satisfies

Assumption (A.2). Finally, for Assumption (A.3) to hold, we
require that rk

[
A− zI ΦW −ΦG1M1 −

√
2G2M2

]
= n

(cf. (26)), which is satisfied if (A,G2) or (A∞, B∞) is
stabilizable on the unit circle. Moreover, if p = l, from
Theorem 1, strong detectability satisfies the rank condition
above and thus Assumption (A.3). �


